Abstract

A method for the optical characterization of a solar concentrator, based on the reverse illumination by a Lambertian source and measurement of intensity of light projected on a far screen, has been developed. It is shown that the projected light intensity is simply correlated to the angle-resolved efficiency of a concentrator, conventionally obtained by a direct illumination procedure. The method has been applied by simulating simple reflective nonimaging and Fresnel lens concentrators.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Development of solar concentrators for high-power solar-pumped lasers

T. H. Dinh, T. Ohkubo, and T. Yabe
Appl. Opt. 53(12) 2711-2719 (2014)

Theory and design of line-to-point focus solar concentrators with tracking secondary optics

Thomas Cooper, Gianluca Ambrosetti, Andrea Pedretti, and Aldo Steinfeld
Appl. Opt. 52(35) 8586-8616 (2013)

Nonimaging optics in luminescent solar concentration

B. D. Markman, R. R. Ranade, and N. C. Giebink
Opt. Express 20(S5) A622-A629 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription