Abstract

A method for the optical characterization of a solar concentrator, based on the reverse illumination by a Lambertian source and measurement of intensity of light projected on a far screen, has been developed. It is shown that the projected light intensity is simply correlated to the angle-resolved efficiency of a concentrator, conventionally obtained by a direct illumination procedure. The method has been applied by simulating simple reflective nonimaging and Fresnel lens concentrators.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Wendelin and J. W. Grossman, ASME J. Electron. Packag. 2, 775 (1995).
  2. F. Arqueros, A. Jiménez, and A. Valverde, Sol. Energy 75, 135 (2003).
    [CrossRef]
  3. K. Pottler, E. Lüpfert, G. H. G. Johnston, and M. R. Shortis, ASME J. Sol. Energy Eng. 127, 94 (2005).
    [CrossRef]
  4. P. Sansoni, F. Francini, and D. Fontani, Opt. Lasers Eng. 45, 351 (2007).
    [CrossRef]
  5. A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
    [CrossRef]
  6. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).
  7. A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665205 (2007).
    [CrossRef]
  8. K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988).

2007 (3)

P. Sansoni, F. Francini, and D. Fontani, Opt. Lasers Eng. 45, 351 (2007).
[CrossRef]

A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
[CrossRef]

A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665205 (2007).
[CrossRef]

2005 (1)

K. Pottler, E. Lüpfert, G. H. G. Johnston, and M. R. Shortis, ASME J. Sol. Energy Eng. 127, 94 (2005).
[CrossRef]

2003 (1)

F. Arqueros, A. Jiménez, and A. Valverde, Sol. Energy 75, 135 (2003).
[CrossRef]

1995 (1)

T. J. Wendelin and J. W. Grossman, ASME J. Electron. Packag. 2, 775 (1995).

Antonini, A.

A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
[CrossRef]

A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665205 (2007).
[CrossRef]

Armani, M.

A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665205 (2007).
[CrossRef]

A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
[CrossRef]

Arqueros, F.

F. Arqueros, A. Jiménez, and A. Valverde, Sol. Energy 75, 135 (2003).
[CrossRef]

Benítez, P.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Coulson, K. L.

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988).

Fontani, D.

P. Sansoni, F. Francini, and D. Fontani, Opt. Lasers Eng. 45, 351 (2007).
[CrossRef]

Franceschini, V.

A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
[CrossRef]

Francini, F.

P. Sansoni, F. Francini, and D. Fontani, Opt. Lasers Eng. 45, 351 (2007).
[CrossRef]

Grossman, J. W.

T. J. Wendelin and J. W. Grossman, ASME J. Electron. Packag. 2, 775 (1995).

Jiménez, A.

F. Arqueros, A. Jiménez, and A. Valverde, Sol. Energy 75, 135 (2003).
[CrossRef]

Johnston, G. H. G.

K. Pottler, E. Lüpfert, G. H. G. Johnston, and M. R. Shortis, ASME J. Sol. Energy Eng. 127, 94 (2005).
[CrossRef]

Lüpfert, E.

K. Pottler, E. Lüpfert, G. H. G. Johnston, and M. R. Shortis, ASME J. Sol. Energy Eng. 127, 94 (2005).
[CrossRef]

Martinelli, G.

A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
[CrossRef]

A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665205 (2007).
[CrossRef]

Miñano, J. C.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Parretta, A.

A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665205 (2007).
[CrossRef]

A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
[CrossRef]

Pottler, K.

K. Pottler, E. Lüpfert, G. H. G. Johnston, and M. R. Shortis, ASME J. Sol. Energy Eng. 127, 94 (2005).
[CrossRef]

Sansoni, P.

P. Sansoni, F. Francini, and D. Fontani, Opt. Lasers Eng. 45, 351 (2007).
[CrossRef]

Shortis, M. R.

K. Pottler, E. Lüpfert, G. H. G. Johnston, and M. R. Shortis, ASME J. Sol. Energy Eng. 127, 94 (2005).
[CrossRef]

Stefancich, M.

A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
[CrossRef]

A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665205 (2007).
[CrossRef]

Valverde, A.

F. Arqueros, A. Jiménez, and A. Valverde, Sol. Energy 75, 135 (2003).
[CrossRef]

Wendelin, T. J.

T. J. Wendelin and J. W. Grossman, ASME J. Electron. Packag. 2, 775 (1995).

Winston, R.

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

ASME J. Electron. Packag. (1)

T. J. Wendelin and J. W. Grossman, ASME J. Electron. Packag. 2, 775 (1995).

ASME J. Sol. Energy Eng. (1)

K. Pottler, E. Lüpfert, G. H. G. Johnston, and M. R. Shortis, ASME J. Sol. Energy Eng. 127, 94 (2005).
[CrossRef]

Opt. Lasers Eng. (1)

P. Sansoni, F. Francini, and D. Fontani, Opt. Lasers Eng. 45, 351 (2007).
[CrossRef]

Proc. SPIE (2)

A. Parretta, A. Antonini, M. Stefancich, V. Franceschini, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665207 (2007).
[CrossRef]

A. Parretta, A. Antonini, M. Stefancich, G. Martinelli, and M. Armani, Proc. SPIE 6652, 665205 (2007).
[CrossRef]

Sol. Energy (1)

F. Arqueros, A. Jiménez, and A. Valverde, Sol. Energy 75, 135 (2003).
[CrossRef]

Other (2)

K. L. Coulson, Polarization and Intensity of Light in the Atmosphere (A. Deepak, 1988).

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics (Elsevier, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Direct characterization method. (a) Schematic principle; (b) efficiency curves of a 3D-CPC for three different wall reflectivities, R w . The 3D-CPC, of 35 cm in length and 1 cm output diameter, was obtained by truncating an ideal 3D-CPC with an axis tilt of 1.43°. The axis tilt is the angle (acceptance angle) at which the efficiency has a drop of 50%.

Fig. 2
Fig. 2

“Inverse” characterization method. The schematic principle is shown. The Lambertian source (ls) can be produced by illuminating a Lambertian, high reflectivity, reflector from the front side or by illuminating a semitransparent Lambertian diffuser from the back side.

Fig. 3
Fig. 3

Schematic of the light collection from the CPC. Two elemental rays are emitted toward the CPC coming from different regions of the projected input area A tot . The ray from A G is representative of collected rays; the ray from A B is representative of rejected rays.

Fig. 4
Fig. 4

Results of simulations with the reverse path method. (a) Relative radiance of the truncated 3D-CPC along ξ, ψ directions compared to the correspondent normalized optical efficiency. (b) Relative radiance of the squared Fresnel lens along ξ, ψ directions compared to the correspondent normalized optical efficiency.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η ( δ , R w ) = Φ out ( δ , R w ) Φ in = Φ out ( δ , 1.0 ) R w N ¯ ( δ ) Φ in ,
η ( δ , φ ) = A G ( δ , φ ) [ A B ( δ , φ ) + A G ( δ , φ ) ] = A G ( δ , φ ) [ A in cos δ ] .
L rel inv ( δ , φ ) = L inv ( δ , φ ) L inv ( 0 ) = η ( δ , φ ) η ( 0 ) = η rel ( δ , φ ) .
L inv ( δ , φ ) = E inv ( d , P ) ( d 2 cos 4 δ ) = E inv ( d , δ , φ ) ( d 2 cos 4 δ ) ,
L rel inv ( δ , φ ) = L inv ( δ , φ ) L inv ( 0 ) = E inv ( d , δ , φ ) E inv ( d , 0 ) 1 cos 4 δ = E rel inv ( δ , φ ) 1 cos 4 δ = η rel ( δ , φ ) .

Metrics