Abstract

We propose and demonstrate that semiconductor optical amplifiers (SOAs) for each wavelength of the input can be described by a lumped-elements sequence of a partly linear polarizer and a retarder followed by a polarization-independent amplifier, and further obtain two necessary conditions for the valuable orthogonal polarization rotation (OPR), which will be instructive for SOA-based all-optical signal processing. Subsequently we implement photoinduced OPR by controlling an 2.5mW pump laser and find the optimal pump wavelength should be an 0.4nm interval around the central wavelength of the probe laser. Therefore we propose a time-domain digital polarization encoding scheme based on photoinduced OPR with cross-gain modulation in a SOA and perform it well in a 15km single-mode-fiber system at 2.5Gbitss, which is applicable to optical-power-equalized fiber communication.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. Manning, and K. Blow, Science 286, 1523 (1999).
    [CrossRef] [PubMed]
  2. M. Stephens, M. Asghari, R. Petty, and I. White, IEEE Photon. Technol. Lett. 9, 449 (1997).
    [CrossRef]
  3. D. Patrick, Electron. Lett. 30, 341 (1994).
    [CrossRef]
  4. H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 13, 335 (2001).
    [CrossRef]
  5. H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
    [CrossRef]
  6. H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003).
    [CrossRef]
  7. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  8. W. Wang, K. Allaart, and D. Lenstra, Electron. Lett. 4, 1602 (2004).
    [CrossRef]
  9. L. Cimini, I. Habbab, R. John, and A. Saleh, Electron. Lett. 23, 1365 (1987).
    [CrossRef]
  10. W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001).
    [CrossRef]

2004 (1)

W. Wang, K. Allaart, and D. Lenstra, Electron. Lett. 4, 1602 (2004).
[CrossRef]

2003 (1)

H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003).
[CrossRef]

2001 (2)

W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 13, 335 (2001).
[CrossRef]

1999 (2)

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

D. Cotter, R. Manning, and K. Blow, Science 286, 1523 (1999).
[CrossRef] [PubMed]

1997 (1)

M. Stephens, M. Asghari, R. Petty, and I. White, IEEE Photon. Technol. Lett. 9, 449 (1997).
[CrossRef]

1994 (1)

D. Patrick, Electron. Lett. 30, 341 (1994).
[CrossRef]

1987 (1)

L. Cimini, I. Habbab, R. John, and A. Saleh, Electron. Lett. 23, 1365 (1987).
[CrossRef]

Allaart, K.

W. Wang, K. Allaart, and D. Lenstra, Electron. Lett. 4, 1602 (2004).
[CrossRef]

Asghari, M.

M. Stephens, M. Asghari, R. Petty, and I. White, IEEE Photon. Technol. Lett. 9, 449 (1997).
[CrossRef]

Blow, K.

D. Cotter, R. Manning, and K. Blow, Science 286, 1523 (1999).
[CrossRef] [PubMed]

Cimini, L.

L. Cimini, I. Habbab, R. John, and A. Saleh, Electron. Lett. 23, 1365 (1987).
[CrossRef]

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).

Cotter, D.

D. Cotter, R. Manning, and K. Blow, Science 286, 1523 (1999).
[CrossRef] [PubMed]

Dorren, H.

H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003).
[CrossRef]

Erasme, D.

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 13, 335 (2001).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

Guekos, G.

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 13, 335 (2001).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

Habbab, I.

L. Cimini, I. Habbab, R. John, and A. Saleh, Electron. Lett. 23, 1365 (1987).
[CrossRef]

Hill, M.

H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003).
[CrossRef]

John, R.

L. Cimini, I. Habbab, R. John, and A. Saleh, Electron. Lett. 23, 1365 (1987).
[CrossRef]

Khoe, G.

H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003).
[CrossRef]

Kogelnik, H.

W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001).
[CrossRef]

Lenstra, D.

W. Wang, K. Allaart, and D. Lenstra, Electron. Lett. 4, 1602 (2004).
[CrossRef]

H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003).
[CrossRef]

Liu, Y.

H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003).
[CrossRef]

Manning, R.

D. Cotter, R. Manning, and K. Blow, Science 286, 1523 (1999).
[CrossRef] [PubMed]

Patrick, D.

D. Patrick, Electron. Lett. 30, 341 (1994).
[CrossRef]

Petty, R.

M. Stephens, M. Asghari, R. Petty, and I. White, IEEE Photon. Technol. Lett. 9, 449 (1997).
[CrossRef]

Saleh, A.

L. Cimini, I. Habbab, R. John, and A. Saleh, Electron. Lett. 23, 1365 (1987).
[CrossRef]

Shieh, W.

W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001).
[CrossRef]

Soto, H.

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 13, 335 (2001).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

Stephens, M.

M. Stephens, M. Asghari, R. Petty, and I. White, IEEE Photon. Technol. Lett. 9, 449 (1997).
[CrossRef]

Wang, W.

W. Wang, K. Allaart, and D. Lenstra, Electron. Lett. 4, 1602 (2004).
[CrossRef]

White, I.

M. Stephens, M. Asghari, R. Petty, and I. White, IEEE Photon. Technol. Lett. 9, 449 (1997).
[CrossRef]

Electron. Lett. (3)

D. Patrick, Electron. Lett. 30, 341 (1994).
[CrossRef]

W. Wang, K. Allaart, and D. Lenstra, Electron. Lett. 4, 1602 (2004).
[CrossRef]

L. Cimini, I. Habbab, R. John, and A. Saleh, Electron. Lett. 23, 1365 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 13, 335 (2001).
[CrossRef]

H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999).
[CrossRef]

M. Stephens, M. Asghari, R. Petty, and I. White, IEEE Photon. Technol. Lett. 9, 449 (1997).
[CrossRef]

Science (1)

D. Cotter, R. Manning, and K. Blow, Science 286, 1523 (1999).
[CrossRef] [PubMed]

Other (1)

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Lumped-element model of SOAs.

Fig. 2
Fig. 2

Experimental setup for PR investigation of the SOA in the pump–probe scheme and the TDPE configuration.

Fig. 3
Fig. 3

Relation of PR to pump wavelength, pump power, and probe laser spectrum; λ o , λ o + , optimal wavelengths.

Fig. 4
Fig. 4

(a) Mode gains and (b) cos 2 α as a function of injected current for pumps: Pc = 0 . 2.5 mW

Fig. 5
Fig. 5

Principle of TDPE based on PPR with XGM in a SOA.

Fig. 6
Fig. 6

Experimental configuration of the TDPE transmission system; RS, retrieved signal.

Fig. 7
Fig. 7

(a) Power equalization of TDPE signal, (b) eye diagrams for received P and S signals, and (c) BER with eye diagram for retrieved signal.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E out TE = g TE E in TE e j θ 2 , E out TM = g TM E in TM e j θ 2 .
S out = [ ( g TE ) 2 E in TE E in TE * + ( g TM ) 2 E in TM E in TM * ( g TE ) 2 E in TE E in TE * ( g TM ) 2 E in TM E in TM * g TE g TM [ E in TE E in TM * e j θ + E in TM E in TE * e j θ ] j g TE g TM [ E in TE E in TM * e j θ E in TM E in TE * e j θ ] ] .
cos 2 α = ( G TE G TM ) ( G TE + G TM ) ,
M = M A M R M P = G ( 1 0 0 0 0 1 0 0 0 0 cos θ sin θ 0 0 sin θ cos θ ) ( 1 cos 2 α 0 0 cos 2 α 1 0 0 0 0 sin 2 α 0 0 0 0 sin 2 α ) ,
θ = φ TE φ TM = φ 0 ( ln G TE ζ ln G TM ) ,
θ 2 θ 1 = φ 0 ln [ G 2 TE ( G 1 TM ) 0.7 G 1 TE ( G 2 TM ) 0.7 ] = π ,
cos 2 α i = ( G i TE G i TM ) ( G i TE + G i TM ) = S 1 S 0 ,

Metrics