Abstract

Semiconductor-based whispering-gallery-mode microcavities are very promising for nonlinear optics applications, thanks to the high optical quality factors attainable with today’s technology. We propose to exploit this advantage to generate cw light through phase-matched difference frequency generation in a triply resonant GaAs microdisk. A proper choice of the microdisk radius and thickness allows one to select the generated wavelength in the band of 2.52.9μm. Besides illustrating the design features, we numerically show that temperature can be effectively used to compensate for wavelength shifts induced on the generated field by fabrication errors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
    [Crossref]
  2. V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, and L. Maleki, J. Opt. Soc. Am. B 20, 1304 (2003).
    [Crossref]
  3. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 92, 043903 (2004).
    [Crossref] [PubMed]
  4. A. A. Savchenkov, A. B. Matsko, M. Mohageg, D. V. Strekalov, and L. Maleki, Opt. Lett. 32, 157 (2007).
    [Crossref]
  5. O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. J. Harris, M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, Opt. Lett. 27, 2091 (2002).
    [Crossref]
  6. Y. Dumeige and P. Féron, Phys. Rev. A 74, 063804 (2006).
    [Crossref]
  7. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, Opt. Lett. 32, 826 (2007).
    [Crossref] [PubMed]
  8. Z. Yang and J. E. Sipe, Opt. Lett. 32, 3296 (2007).
    [Crossref] [PubMed]
  9. C. Lin, M. Grau, O. Dier, and M.-C. Amann, Appl. Phys. Lett. 84, 5088 (2004).
    [Crossref]
  10. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
    [Crossref] [PubMed]
  11. J. E. Heebner, T. C. Bond, and J. S. Kallman, Opt. Express 15, 4452 (2007).
    [Crossref] [PubMed]
  12. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  13. A. Yariv, Quantum Electronics (Wiley, 1984).
  14. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
    [Crossref]

2007 (4)

2006 (1)

Y. Dumeige and P. Féron, Phys. Rev. A 74, 063804 (2006).
[Crossref]

2004 (2)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

C. Lin, M. Grau, O. Dier, and M.-C. Amann, Appl. Phys. Lett. 84, 5088 (2004).
[Crossref]

2003 (1)

2002 (1)

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
[Crossref]

1997 (2)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[Crossref]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
[Crossref] [PubMed]

Aitchison, J. S.

Amann, M.-C.

C. Lin, M. Grau, O. Dier, and M.-C. Amann, Appl. Phys. Lett. 84, 5088 (2004).
[Crossref]

Becouarn, L.

Birks, T. A.

Bisson, S. E.

Bond, T. C.

Bristow, A. D.

Chak, P.

Cheung, G.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[Crossref]

Dier, O.

C. Lin, M. Grau, O. Dier, and M.-C. Amann, Appl. Phys. Lett. 84, 5088 (2004).
[Crossref]

Dumeige, Y.

Y. Dumeige and P. Féron, Phys. Rev. A 74, 063804 (2006).
[Crossref]

Eyres, L. A.

Fejer, M. M.

Féron, P.

Y. Dumeige and P. Féron, Phys. Rev. A 74, 063804 (2006).
[Crossref]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[Crossref]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
[Crossref]

Gerard, B.

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
[Crossref]

Grau, M.

C. Lin, M. Grau, O. Dier, and M.-C. Amann, Appl. Phys. Lett. 84, 5088 (2004).
[Crossref]

Harris, J. S. J.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Heebner, J. E.

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
[Crossref]

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

V. S. Ilchenko, A. B. Matsko, A. A. Savchenkov, and L. Maleki, J. Opt. Soc. Am. B 20, 1304 (2003).
[Crossref]

Iyer, R.

Jacques, F.

Kallman, J. S.

Knight, J. C.

Kulp, T. J.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[Crossref]

Lallier, E.

Levi, O.

Lin, C.

C. Lin, M. Grau, O. Dier, and M.-C. Amann, Appl. Phys. Lett. 84, 5088 (2004).
[Crossref]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[Crossref]

Maleki, L.

Matsko, A. B.

Mohageg, M.

Parameswaran, K. R.

Pinguet, T. J.

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
[Crossref]

Savchenkov, A. A.

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
[Crossref]

Sipe, J. E.

Skauli, T.

Smirl, A. L.

Strekalov, D. V.

van Driel, H. M.

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
[Crossref]

Yang, Z.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, 1984).

Appl. Phys. Lett. (1)

C. Lin, M. Grau, O. Dier, and M.-C. Amann, Appl. Phys. Lett. 84, 5088 (2004).
[Crossref]

J. Appl. Phys. (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, J. Appl. Phys. 87, 7825 (2000).
[Crossref]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

Y. Dumeige and P. Féron, Phys. Rev. A 74, 063804 (2006).
[Crossref]

Phys. Rev. Lett. (1)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 92, 043903 (2004).
[Crossref] [PubMed]

Other (2)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

A. Yariv, Quantum Electronics (Wiley, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Sketch of a GaAs microdisk coupled to input and output waveguides.

Fig. 2
Fig. 2

Example of WGM radial profiles, as obtained with the effective index method. The solid (dashed) curve corresponds to the TE pump at λ 1 ( λ 2 ) , and the light gray dotted curve corresponds to the TM mode at λ 3 . Inset, 2D section of the generated field at λ 3 obtained with a 3D finite difference code.

Fig. 3
Fig. 3

Radius (top), thickness (center), and temperature (bottom) effect on the generated wavelength ( λ 3 , reported on the x axes). Since the triplet of azimuthal numbers is fixed and the radial mode profiles do not change significantly, the conversion efficiency is essentially the same for each point. The dashed lines on the top graph correspond to the radius fabrication tolerance. No tolerance lines are present in the center graph, since h is well-controlled by the epitaxial growth.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d 2 ψ d ρ 2 + 1 ρ d ψ d ρ + ( n 2 k ̃ 2 m 2 ρ 2 ) ψ = 0 ,
d a 1 d t = j ω 1 a 1 a 1 τ 1 t + 2 τ 1 c s 1 ,
d a 2 d t = j ω 2 a 2 a 2 τ 2 t + 2 τ 2 c s 2 ,
d a 3 d t = j ω 3 a 3 a 3 τ 3 t + s N L ,
A i 2 = 4 ω i Q i c ( 1 + Q i c Q i i ) 2 P i in ( i = 1 , 2 ) .
s N L = ( j ω 3 4 ) ϵ 0 a 1 a 2 * I ,
I = V i j k χ i j k ( 2 ) E i * ( ω 3 ) E j ( ω 1 ) E k * ( ω 2 ) d V ,
P 3 out = 2 A 3 2 τ 3 c = ( ϵ 0 τ 3 t ω 3 ) 2 8 τ 3 c I 2 A 1 2 A 2 2 .
P 3 out = 4 ω 3 ω 1 ω 2 i = 1 3 [ Q i c ( 1 + Q i c Q i i ) 2 ] ϵ 0 2 I 2 P 1 in P 2 in .

Metrics