Abstract

Orthogonal frequency-division multiplexing is implemented in optical domain using the Fourier transforming properties of time lenses. It is shown that the third- and higher-order dispersions of the transmission fiber can be significantly suppressed using the proposed scheme.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lowery and J. Armstrong, Opt. Express 13, 10003 (2005).
    [CrossRef] [PubMed]
  2. I. B. Djordjevic and B. Vasic, Opt. Express 14, 3767 (2006).
    [CrossRef] [PubMed]
  3. A. W. Lohmann and D. Mendlovic, Appl. Opt. 31, 6212 (1992).
    [CrossRef] [PubMed]
  4. T. Jannson, Opt. Lett. 8, 232 (1983).
    [CrossRef] [PubMed]
  5. S. Kumar, Opt. Lett. 32, 346 (2007).
    [CrossRef] [PubMed]
  6. D. Yang, S. Kumar, and H. Wang, Opt. Commun. 281, 238 (2008).
    [CrossRef]
  7. T. Hirooka and M. Nakazawa, J. Lightwave Technol. 24, 2530 (2006).
    [CrossRef]

2008 (1)

D. Yang, S. Kumar, and H. Wang, Opt. Commun. 281, 238 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (1)

1992 (1)

1983 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of a conventional OFDM system. PD, photodetector.

Fig. 2
Fig. 2

Block diagram of the proposed scheme.

Fig. 3
Fig. 3

Implementation of Fourier transform/inverse Fourier transform using time lens-based 2 F system. PM, phase modulator.

Fig. 4
Fig. 4

Plot of input and output powers versus time. Solid curve, output power without using FT and IFT; dotted curve, input power; +, output power with FT and IFT of Fig. 2.

Fig. 5
Fig. 5

Comparison of BER between a OFDM-based system and the conventional OOK system without FT and IFT. T block = 0.89 T ofdm .

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

u ̃ ( t ) = F [ u ( t ) ; t t ] = u ( t ) exp ( i 2 π t t ) d t ,
u ( t ) = F 1 [ u ̃ ( t ) ; t t ] = u ̃ ( t ) exp ( i 2 π t t ) d t .
h ( t ) = exp ( i α t 2 ) .
S 1 = 1 2 α .
u out IFT ( t ) = F 1 [ u ̃ in ( t ) ; t t ( 2 π S 1 ) ] i 2 π S 1 ,
= u in ( t ( 2 π S 1 ) ) i 2 π S 1 .
u ̃ out FT ( t ) = 1 i 2 π S 2 F [ u out fiber ( t ) ; t t ( 2 π S 2 ) ] ,
= u ̃ out fiber ( t ( 2 π S 2 ) ) i 2 π S 2 ,
I ( t ) = u ̃ out FT ( t ) 2 ,
H f ( f ) = exp [ i θ ( f ) L ] ,
θ ( f ) = β 2 ( 2 π f ) 2 2 + β 3 ( 2 π f ) 3 6 + β 4 ( 2 π f ) 4 24 + ,
u out fiber ( t ) = u out IFT ( t ) h f ( t ) ,
u ̃ out FT ( t ) = 1 i 2 π S 2 F { u out IFT ( t ) ; t t ( 2 π S 2 ) } F { h f ( t ) ; t t ( 2 π S 2 ) } .
u out FT ( t ) = u ̃ in ( t ) exp [ i L θ ( t ( 2 π S 2 ) ) ] .
I ( t ) = u ̃ in ( t ) 2 .
h ( t ) = n = h 0 ( t n T ofdm ) ,
h 0 ( t ) = exp ( i α t 2 ) for t T block 2 ,
= 0 elsewhere
u ̃ in ( t ) = n = u n ( t n T ofdm ) ,
u n ( t ) = f n ( t ) for t T block 2 ,
= 0 elsewhere
S 1 T block ( 2 f max ) ,

Metrics