Abstract

We present a novel optical technique that produces nanometer dimensional measurement sensitivity using a conventional bright-field optical microscope, by analyzing through-focus scanning-optical-microscope images obtained at different focus positions. In principle, this technique can be used to identify which dimension is changing between two nanosized targets and to determine the dimension using a library-matching method. This methodology has potential utility for a wide range of target geometries and application areas, including nanometrology, nanomanufacturing, semiconductor process control, and biotechnology.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Instrumentation and Metrology for Nanotechnology, Report of the National Nanotechnology Initiative (2004), http://www.nano.gov/NNI_Instrumentation_Metrology_rpt.pdf.
  2. W. Lojkowski, R. Turan, A. Proykova, and A. Daniszewska, Nanometrology. Eighth Nanoforum Report (Nanoforum, 2006), http://www.innovationsgesellschaft.ch/images/fremde_publikationen/NANOMETROLOGY_Report.pdf.
  3. H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, Optical Methods for Dimensional Metrology in Production Engineering: Annals of the CIRP (Elsevier, 2002), Vol. 51, pp. 685-698.
  4. R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
    [CrossRef]
  5. R. Attota, R. M. Silver, and J. Potzick, Proc. SPIE 6289, 62890Q-1 (2006).
  6. R. Attota, R. M. Silver, and R. G. Dixson, Appl. Opt. 47, 495 (2008).
    [CrossRef] [PubMed]
  7. R. Attota, R. M. Silver, and B. M. Barnes, Proc. SPIE 6922, 6922OE (2008).
  8. M. Davidson, Microelectron. Eng. 13, 523 (1991).
    [CrossRef]
  9. T. V. Pistor, Ph.D. thesis, Memorandum UCB/ERL M01/19 (University of California at Berkeley, 2001).
  10. T. A. Germer and E. Marx, Proc. SPIE 6152, 61520I1 (2006).
  11. R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, Appl. Opt. 46, 4248 (2007).
    [CrossRef] [PubMed]
  12. R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
    [CrossRef]

2008 (3)

R. Attota, R. M. Silver, and B. M. Barnes, Proc. SPIE 6922, 6922OE (2008).

R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
[CrossRef]

R. Attota, R. M. Silver, and R. G. Dixson, Appl. Opt. 47, 495 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

R. Attota, R. M. Silver, and J. Potzick, Proc. SPIE 6289, 62890Q-1 (2006).

T. A. Germer and E. Marx, Proc. SPIE 6152, 61520I1 (2006).

2004 (1)

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

1991 (1)

M. Davidson, Microelectron. Eng. 13, 523 (1991).
[CrossRef]

Attota, R.

R. Attota, R. M. Silver, and B. M. Barnes, Proc. SPIE 6922, 6922OE (2008).

R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
[CrossRef]

R. Attota, R. M. Silver, and R. G. Dixson, Appl. Opt. 47, 495 (2008).
[CrossRef] [PubMed]

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, Appl. Opt. 46, 4248 (2007).
[CrossRef] [PubMed]

R. Attota, R. M. Silver, and J. Potzick, Proc. SPIE 6289, 62890Q-1 (2006).

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

Barnes, B. M.

R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
[CrossRef]

R. Attota, R. M. Silver, and B. M. Barnes, Proc. SPIE 6922, 6922OE (2008).

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, Appl. Opt. 46, 4248 (2007).
[CrossRef] [PubMed]

Bishop, M.

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

Daniszewska, A.

W. Lojkowski, R. Turan, A. Proykova, and A. Daniszewska, Nanometrology. Eighth Nanoforum Report (Nanoforum, 2006), http://www.innovationsgesellschaft.ch/images/fremde_publikationen/NANOMETROLOGY_Report.pdf.

Davidson, M.

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

M. Davidson, Microelectron. Eng. 13, 523 (1991).
[CrossRef]

Dixson, R.

R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
[CrossRef]

Dixson, R. G.

Germer, T. A.

T. A. Germer and E. Marx, Proc. SPIE 6152, 61520I1 (2006).

Heckert, A.

R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
[CrossRef]

Jun, J.

R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
[CrossRef]

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, Appl. Opt. 46, 4248 (2007).
[CrossRef] [PubMed]

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

Kunzmann, H.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, Optical Methods for Dimensional Metrology in Production Engineering: Annals of the CIRP (Elsevier, 2002), Vol. 51, pp. 685-698.

Larrabee, R.

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

Lojkowski, W.

W. Lojkowski, R. Turan, A. Proykova, and A. Daniszewska, Nanometrology. Eighth Nanoforum Report (Nanoforum, 2006), http://www.innovationsgesellschaft.ch/images/fremde_publikationen/NANOMETROLOGY_Report.pdf.

Marx, E.

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, Appl. Opt. 46, 4248 (2007).
[CrossRef] [PubMed]

T. A. Germer and E. Marx, Proc. SPIE 6152, 61520I1 (2006).

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

Neuschaefer-Rube, U.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, Optical Methods for Dimensional Metrology in Production Engineering: Annals of the CIRP (Elsevier, 2002), Vol. 51, pp. 685-698.

Patrick, H. J.

Pfeifer, T.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, Optical Methods for Dimensional Metrology in Production Engineering: Annals of the CIRP (Elsevier, 2002), Vol. 51, pp. 685-698.

Pistor, T. V.

T. V. Pistor, Ph.D. thesis, Memorandum UCB/ERL M01/19 (University of California at Berkeley, 2001).

Potzick, J.

R. Attota, R. M. Silver, and J. Potzick, Proc. SPIE 6289, 62890Q-1 (2006).

Proykova, A.

W. Lojkowski, R. Turan, A. Proykova, and A. Daniszewska, Nanometrology. Eighth Nanoforum Report (Nanoforum, 2006), http://www.innovationsgesellschaft.ch/images/fremde_publikationen/NANOMETROLOGY_Report.pdf.

Schwenke, H.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, Optical Methods for Dimensional Metrology in Production Engineering: Annals of the CIRP (Elsevier, 2002), Vol. 51, pp. 685-698.

Silver, R. M.

R. Attota, R. M. Silver, and B. M. Barnes, Proc. SPIE 6922, 6922OE (2008).

R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
[CrossRef]

R. Attota, R. M. Silver, and R. G. Dixson, Appl. Opt. 47, 495 (2008).
[CrossRef] [PubMed]

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, Appl. Opt. 46, 4248 (2007).
[CrossRef] [PubMed]

R. Attota, R. M. Silver, and J. Potzick, Proc. SPIE 6289, 62890Q-1 (2006).

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

Stocker, M.

R. M. Silver, B. M. Barnes, R. Attota, J. Jun, M. Stocker, E. Marx, and H. J. Patrick, Appl. Opt. 46, 4248 (2007).
[CrossRef] [PubMed]

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

Turan, R.

W. Lojkowski, R. Turan, A. Proykova, and A. Daniszewska, Nanometrology. Eighth Nanoforum Report (Nanoforum, 2006), http://www.innovationsgesellschaft.ch/images/fremde_publikationen/NANOMETROLOGY_Report.pdf.

Appl. Opt. (2)

Microelectron. Eng. (1)

M. Davidson, Microelectron. Eng. 13, 523 (1991).
[CrossRef]

Proc. SPIE (5)

T. A. Germer and E. Marx, Proc. SPIE 6152, 61520I1 (2006).

R. M. Silver, B. M. Barnes, A. Heckert, R. Attota, R. Dixson, and J. Jun, Proc. SPIE 6922, 69221M (2008).
[CrossRef]

R. M. Silver, R. Attota, M. Stocker, M. Bishop, J. Jun, E. Marx, M. Davidson, and R. Larrabee, Proc. SPIE 5375, 78 (2004).
[CrossRef]

R. Attota, R. M. Silver, and J. Potzick, Proc. SPIE 6289, 62890Q-1 (2006).

R. Attota, R. M. Silver, and B. M. Barnes, Proc. SPIE 6922, 6922OE (2008).

Other (4)

Instrumentation and Metrology for Nanotechnology, Report of the National Nanotechnology Initiative (2004), http://www.nano.gov/NNI_Instrumentation_Metrology_rpt.pdf.

W. Lojkowski, R. Turan, A. Proykova, and A. Daniszewska, Nanometrology. Eighth Nanoforum Report (Nanoforum, 2006), http://www.innovationsgesellschaft.ch/images/fremde_publikationen/NANOMETROLOGY_Report.pdf.

H. Schwenke, U. Neuschaefer-Rube, T. Pfeifer, and H. Kunzmann, Optical Methods for Dimensional Metrology in Production Engineering: Annals of the CIRP (Elsevier, 2002), Vol. 51, pp. 685-698.

T. V. Pistor, Ph.D. thesis, Memorandum UCB/ERL M01/19 (University of California at Berkeley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Method to construct TSOM images. (a) Schematic showing the image-acquisition process by through-focus scanning of a gold particle on a quartz substrate. A schematic of the cross-sectional image-intensity profiles passing through the center of the gold particle at the various scan positions is shown on the right side. (b) Simulated 2D TSOM image ( X Z plane) passing through the center of the 60 nm gold particle on the quartz substrate: λ = 365 nm , illumination NA = 0.3 , imaging NA = 0.95 .

Fig. 2
Fig. 2

Simulated differential 2D-TSOM images in the X Z plane passing through the center of the gold particle, obtained for (a) the size difference of 2.0 nm in diameter ( 62.0 nm and 60.0 nm ) and (b) the shape difference as a result of 5.0 nm elongation in the height (Z-axis dimension) of the gold particle ( 60 nm × 60 nm × 65 nm and 60 nm × 60 nm × 60 nm ) on the quartz substrate: λ = 365 nm , illumination NA = 0.3 , imaging NA = 0.95 .

Fig. 3
Fig. 3

Simulated differential TSOM images obtained for 2D isolated line targets for (a) 1.0 nm difference in the linewidth ( 41 nm and 40 nm ), (b) 1.0 nm difference in the line height ( 101 nm and 100 nm ), and (c) 1.0° difference in the sidewall angle (90° and 89°). Si line on Si substrate. λ = 546 nm , illumination NA = 0.4 , imaging NA = 0.8 .

Fig. 4
Fig. 4

(a) Experimental TSOM image for the 2D line grating target with 152 nm linewidth. (b) Simulated TSOM image obtained for the same target shown in (a). (c) The experimental differential TSOM image for 3.0 nm difference in the 2D grating target linewidth ( 149 nm and 146 nm ). (d) The simulated differential TSOM image for the same 3.0 nm difference in the linewidth as shown in (c). Si line on Si substrate. λ = 546 nm ; line height = 230 nm ; pitch = 601 nm ; illumination NA = 0.36 , imaging NA = 0.8 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MSD = 1 n i = 1 n ( TSOM image 1 TSOM image 2 ) 2 ,

Metrics