Abstract

An unusual emission of light is observed when a coherent light beam is passed through a mixture of a magnetorheological suspension and a ferrofluid that is subjected to a critical magnetic field. When first the incident light is removed and then the field is switched off, a flash of light is observed. In this Letter certain characteristics of this unusual emission are reported. Our findings suggest that a part of the incident light energy is magnetically trapped within the medium. Upon removal of the field, the same is released. Several physical phenomena that may give rise to such emission are discussed. The magnetically tunable emission will be useful to develop photonic devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).
  2. R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, Phys. Rev. Lett. 96, 127402 (2006).
    [CrossRef] [PubMed]
  3. R. V. Mehta, R. Patel, and R. V. Upadhyay, Phys. Rev. B 74, 195127 (2006).
    [CrossRef]
  4. X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater. (Weinheim, Ger.) 13, 1681 (2001).
    [CrossRef]
  5. X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater. 14, 1249 (2002).
    [CrossRef]
  6. J. Bibette, J. Magn. Magn. Mater. 122, 37 (1993).
    [CrossRef]
  7. G. Jianping, H. Yongxing, and Y. Yadong, Angew. Chem., Int. Ed. 46, 7428 (2007).
    [CrossRef]
  8. Y. Saado, M. Golosovsky, D. Davidov, and A. Frekel, Phys. Rev. B 66, 195108 (2002).
    [CrossRef]
  9. W. L. Sha, C. H. Liu, and R. R. Alfano, Opt. Lett. 19, 1922 (1994).
    [CrossRef] [PubMed]
  10. E. J. Reed, M. Soljacic, and J. D. Joannopoulos, Phys. Rev. Lett. 90, 203904 (2003).
    [CrossRef] [PubMed]
  11. S. Taketomi, Jpn. J. Appl. Phys. Part 1 22, 1137 (1983).
    [CrossRef]
  12. L. Zhou, W. Weijia, and P. Sheng, Phys. Rev. Lett. 81, 1509 (1998).
    [CrossRef]
  13. M. Kerker, D. S. Wang, and C. L. Giles, J. Opt. Soc. Am. 73, 765 (1983).
    [CrossRef]
  14. F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, Phys. Rev. Lett. 84, 1435 (2000).
    [CrossRef] [PubMed]
  15. R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, Phys. Rev. E 69, 026606 (2004).
    [CrossRef]
  16. M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Nano Lett. 1, 309 (2001).
    [CrossRef]
  17. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).
  18. K. P. Belov, Phys. Usp. 36, 380 (1993).
    [CrossRef]

2007 (2)

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).

G. Jianping, H. Yongxing, and Y. Yadong, Angew. Chem., Int. Ed. 46, 7428 (2007).
[CrossRef]

2006 (2)

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Mehta, R. Patel, and R. V. Upadhyay, Phys. Rev. B 74, 195127 (2006).
[CrossRef]

2004 (1)

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, Phys. Rev. E 69, 026606 (2004).
[CrossRef]

2003 (1)

E. J. Reed, M. Soljacic, and J. D. Joannopoulos, Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

2002 (2)

Y. Saado, M. Golosovsky, D. Davidov, and A. Frekel, Phys. Rev. B 66, 195108 (2002).
[CrossRef]

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater. 14, 1249 (2002).
[CrossRef]

2001 (2)

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater. (Weinheim, Ger.) 13, 1681 (2001).
[CrossRef]

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Nano Lett. 1, 309 (2001).
[CrossRef]

2000 (1)

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, Phys. Rev. Lett. 84, 1435 (2000).
[CrossRef] [PubMed]

1998 (1)

L. Zhou, W. Weijia, and P. Sheng, Phys. Rev. Lett. 81, 1509 (1998).
[CrossRef]

1994 (1)

1993 (2)

J. Bibette, J. Magn. Magn. Mater. 122, 37 (1993).
[CrossRef]

K. P. Belov, Phys. Usp. 36, 380 (1993).
[CrossRef]

1983 (2)

Alfano, R. R.

Artemyev, M. V.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Nano Lett. 1, 309 (2001).
[CrossRef]

Asher, S. A.

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater. 14, 1249 (2002).
[CrossRef]

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater. (Weinheim, Ger.) 13, 1681 (2001).
[CrossRef]

Belov, K. P.

K. P. Belov, Phys. Usp. 36, 380 (1993).
[CrossRef]

Bennemann, K. H.

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, Phys. Rev. E 69, 026606 (2004).
[CrossRef]

Bhatnagar, S. P.

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).

Bibette, J.

J. Bibette, J. Magn. Magn. Mater. 122, 37 (1993).
[CrossRef]

Bimberg, D.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Chudasama, B.

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).

Davidov, D.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frekel, Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Desai, H. B.

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).

Desai, R.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Frekel, A.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frekel, Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Friedman, G.

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater. 14, 1249 (2002).
[CrossRef]

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater. (Weinheim, Ger.) 13, 1681 (2001).
[CrossRef]

Giles, C. L.

Golosovsky, M.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frekel, Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Grundmann, M.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Humfeld, K. D.

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater. 14, 1249 (2002).
[CrossRef]

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater. (Weinheim, Ger.) 13, 1681 (2001).
[CrossRef]

Jaschinski, H.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Nano Lett. 1, 309 (2001).
[CrossRef]

Jianping, G.

G. Jianping, H. Yongxing, and Y. Yadong, Angew. Chem., Int. Ed. 46, 7428 (2007).
[CrossRef]

Joannopoulos, J. D.

E. J. Reed, M. Soljacic, and J. D. Joannopoulos, Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

Joyes, P.

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, Phys. Rev. E 69, 026606 (2004).
[CrossRef]

Kerker, M.

Langbein, W.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Nano Lett. 1, 309 (2001).
[CrossRef]

Ledentsov, N. N.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Liu, C. H.

Majetich, S. A.

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater. 14, 1249 (2002).
[CrossRef]

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater. (Weinheim, Ger.) 13, 1681 (2001).
[CrossRef]

Martinez, A. S.

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, Phys. Rev. Lett. 84, 1435 (2000).
[CrossRef] [PubMed]

Mehta, R. V.

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Mehta, R. Patel, and R. V. Upadhyay, Phys. Rev. B 74, 195127 (2006).
[CrossRef]

Parekh, K.

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Patel, R.

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

R. V. Mehta, R. Patel, and R. V. Upadhyay, Phys. Rev. B 74, 195127 (2006).
[CrossRef]

Pinheiro, F. A.

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, Phys. Rev. Lett. 84, 1435 (2000).
[CrossRef] [PubMed]

Reed, E. J.

E. J. Reed, M. Soljacic, and J. D. Joannopoulos, Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

Saado, Y.

Y. Saado, M. Golosovsky, D. Davidov, and A. Frekel, Phys. Rev. B 66, 195108 (2002).
[CrossRef]

Sampaio, L. C.

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, Phys. Rev. Lett. 84, 1435 (2000).
[CrossRef] [PubMed]

Sha, W. L.

Sheng, P.

L. Zhou, W. Weijia, and P. Sheng, Phys. Rev. Lett. 81, 1509 (1998).
[CrossRef]

Soljacic, M.

E. J. Reed, M. Soljacic, and J. D. Joannopoulos, Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

Taketomi, S.

S. Taketomi, Jpn. J. Appl. Phys. Part 1 22, 1137 (1983).
[CrossRef]

Tarento, R. J.

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, Phys. Rev. E 69, 026606 (2004).
[CrossRef]

Upadhyay, R. V.

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).

R. V. Mehta, R. Patel, and R. V. Upadhyay, Phys. Rev. B 74, 195127 (2006).
[CrossRef]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Van de Walle, J.

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, Phys. Rev. E 69, 026606 (2004).
[CrossRef]

Wang, D. S.

Wannemacher, R.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Nano Lett. 1, 309 (2001).
[CrossRef]

Weijia, W.

L. Zhou, W. Weijia, and P. Sheng, Phys. Rev. Lett. 81, 1509 (1998).
[CrossRef]

Woggon, U.

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Nano Lett. 1, 309 (2001).
[CrossRef]

Xu, X.

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater. 14, 1249 (2002).
[CrossRef]

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater. (Weinheim, Ger.) 13, 1681 (2001).
[CrossRef]

Yadong, Y.

G. Jianping, H. Yongxing, and Y. Yadong, Angew. Chem., Int. Ed. 46, 7428 (2007).
[CrossRef]

Yongxing, H.

G. Jianping, H. Yongxing, and Y. Yadong, Angew. Chem., Int. Ed. 46, 7428 (2007).
[CrossRef]

Zhou, L.

L. Zhou, W. Weijia, and P. Sheng, Phys. Rev. Lett. 81, 1509 (1998).
[CrossRef]

Adv. Mater. (Weinheim, Ger.) (1)

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Adv. Mater. (Weinheim, Ger.) 13, 1681 (2001).
[CrossRef]

Angew. Chem., Int. Ed. (1)

G. Jianping, H. Yongxing, and Y. Yadong, Angew. Chem., Int. Ed. 46, 7428 (2007).
[CrossRef]

Chem. Mater. (1)

X. Xu, G. Friedman, K. D. Humfeld, S. A. Majetich, and S. A. Asher, Chem. Mater. 14, 1249 (2002).
[CrossRef]

Curr. Sci. (1)

R. V. Mehta, R. Patel, B. Chudasama, H. B. Desai, S. P. Bhatnagar, and R. V. Upadhyay, Curr. Sci. 93, 1071 (2007).

J. Magn. Magn. Mater. (1)

J. Bibette, J. Magn. Magn. Mater. 122, 37 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. Part 1 (1)

S. Taketomi, Jpn. J. Appl. Phys. Part 1 22, 1137 (1983).
[CrossRef]

Nano Lett. (1)

M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, Nano Lett. 1, 309 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

Y. Saado, M. Golosovsky, D. Davidov, and A. Frekel, Phys. Rev. B 66, 195108 (2002).
[CrossRef]

R. V. Mehta, R. Patel, and R. V. Upadhyay, Phys. Rev. B 74, 195127 (2006).
[CrossRef]

Phys. Rev. E (1)

R. J. Tarento, K. H. Bennemann, P. Joyes, and J. Van de Walle, Phys. Rev. E 69, 026606 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

L. Zhou, W. Weijia, and P. Sheng, Phys. Rev. Lett. 81, 1509 (1998).
[CrossRef]

F. A. Pinheiro, A. S. Martinez, and L. C. Sampaio, Phys. Rev. Lett. 84, 1435 (2000).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacic, and J. D. Joannopoulos, Phys. Rev. Lett. 90, 203904 (2003).
[CrossRef] [PubMed]

R. V. Mehta, R. Patel, R. Desai, R. V. Upadhyay, and K. Parekh, Phys. Rev. Lett. 96, 127402 (2006).
[CrossRef] [PubMed]

Phys. Usp. (1)

K. P. Belov, Phys. Usp. 36, 380 (1993).
[CrossRef]

Other (1)

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Supplementary Material (2)

» Media 1: MPG (2848 KB)     
» Media 2: MPG (5795 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used to study the unusual emission of light from the suspension of micrometer-sized magnetite spheres dispersed in a magnetic fluid. 1, He–Ne polarized laser; 2, electromechanical shutter; 3, shutter control; 4, beam splitter; 5, reflector; 6, polaroid; 7, photodetector; 8, iris diaphragm; 9, electromagnet; 10, glass cuvette; 11, Polaroid; 12, photodetector; 13, storage oscilloscope; 14, PC; 15, electromagnet power supply; 16, field control device; 17, Hall probe.

Fig. 2
Fig. 2

(a)–(d) (Media 1) Forward- and backward-scattered diffraction patterns recorded by a CCD camera and (e) storage oscilloscope traces demonstrating the release of light pulse from the sample. Here trace 1 is the Hall probe output, 2 is the reference detector signal, 3 is the signal through the sample, and 4 is the control pulses for magnetic field (Video available from authors).

Fig. 3
Fig. 3

Variation of the intensity of the retrieved pulse (shown as circles) as a function of the analyzer angle. It is seen that the analyzer is crossed only when the angle between the polarization vectors of the incident and the emergent light is 90°. The findings indicate that the retrieved flash has the same state of polarization as that of the incident one. The inset shows the measurement of the wavelength, and the bandwidth of the incident and retrieved light. The frequency and the bandwidth of the incident as well that of the retrieved flash were found to be 633 nm and 0.6 nm , respectively. For the green diode laser the wavelength and bandwidths for the incident as well as retrieved flash were respectively 532 and 1.1 nm .

Fig. 4
Fig. 4

(Media 2) Experiment to visualize the presence of light energy having wavelength 532 nm even in absence of incident light. (A) The sample placed in zero magnetic field and exposed to the green laser. The CCD image of the transmitted pattern is shown on the right side. (B) At the field H = H C ; no light is transmitted by the sample. (C) At the field H = H C ; first the laser light is cut off (shutter is closed) and Rh B-640 dye is injected in the sample. An orange flash is observed. The appearance of orange flash even in absence of the incident green light suggests the presence of light energy corresponding to wavelength 532 nm . This stored energy interact with the dye molecules and emit the orange flash. (Video available from authors).

Metrics