Abstract

A method has been developed for retrieving the complete angular selectivity profile of transmission holographic gratings in one step. The method is applied to study in real time the shrinkage and changes in the effective optical thickness of a slanted holographic grating recorded in an acrylamide-based photopolymer. It can form the basis of a holographic sensor of analytes that cause a thickness change in the holographic medium. It can also be useful for the study and optimization of holographic recording materials and for quality control during production of holographic optical elements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.Ludman, H.J.Caulfield, and J.Riccobono, eds, Holography for the New Millennium (Springer, 2002).
    [CrossRef]
  2. H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds, Holographic Data Storage (Springer Verlag, 2000).
  3. W. S. Colburn and K. A. Haines, Appl. Opt. 10, 1636 (1971).
    [CrossRef] [PubMed]
  4. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
    [CrossRef]
  5. J. M. Russo and R. K. Kostuk, Appl. Opt. 46, 7494 (2007).
    [CrossRef] [PubMed]
  6. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, Appl. Phys. Lett. 92, 031109 (2008).
    [CrossRef]
  7. G. Barbastathis and D. Psaltis, in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds. (Springer Verlag, 2000), pp. 21-62.
  8. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993).
    [CrossRef]
  9. G. Barbastathis, M. Levene, and D. Psaltis, Appl. Opt. 35, 2403 (1996).
    [CrossRef] [PubMed]
  10. J. T. Sheridan and J. R. Lawrence, J. Opt. Soc. Am. A 17, 1108 (2000).
    [CrossRef]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  12. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. Kelly, and J. Sheridan, Opt. Express 13, 1939 (2005).
    [CrossRef] [PubMed]

2008 (1)

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

2007 (1)

2005 (1)

2000 (1)

1998 (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
[CrossRef]

1996 (1)

1995 (1)

1993 (1)

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993).
[CrossRef]

1971 (1)

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
[CrossRef]

Barbastathis, G.

G. Barbastathis, M. Levene, and D. Psaltis, Appl. Opt. 35, 2403 (1996).
[CrossRef] [PubMed]

G. Barbastathis and D. Psaltis, in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds. (Springer Verlag, 2000), pp. 21-62.

Beléndez, A.

Boyd, C.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
[CrossRef]

Caulfield, H. J.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993).
[CrossRef]

Colburn, W. S.

Dhar, L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
[CrossRef]

Gallego, S.

Gaylord, T. K.

Grann, E. B.

Haines, K. A.

Jallapuram, R.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

Kelly, J.

Kostuk, R. K.

Lawrence, J. R.

Levene, M.

Márquez, A.

Martin, S.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

Mirsalehi, M. M.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993).
[CrossRef]

Moharam, M. G.

Naydenova, I.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

Neipp, C.

Ortuño, M.

Pascual, I.

Pommet, D. A.

Psaltis, D.

G. Barbastathis, M. Levene, and D. Psaltis, Appl. Opt. 35, 2403 (1996).
[CrossRef] [PubMed]

G. Barbastathis and D. Psaltis, in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds. (Springer Verlag, 2000), pp. 21-62.

Rhee, U.-S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993).
[CrossRef]

Russo, J. M.

Schilling, M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
[CrossRef]

Schnoes, M. G.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
[CrossRef]

Shamir, J.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993).
[CrossRef]

Sheridan, J.

Sheridan, J. T.

Toal, V.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

Vikram, C. S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993).
[CrossRef]

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, Appl. Phys. Lett. 73, 1337 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, Opt. Eng. 32, 1839 (1993).
[CrossRef]

Opt. Express (1)

Other (3)

J.Ludman, H.J.Caulfield, and J.Riccobono, eds, Holography for the New Millennium (Springer, 2002).
[CrossRef]

H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds, Holographic Data Storage (Springer Verlag, 2000).

G. Barbastathis and D. Psaltis, in Holographic Data Storage, H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds. (Springer Verlag, 2000), pp. 21-62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Probing a grating using a defocused beam. θ is the Bragg angle, and ϕ is the slant angle of the fringes. The intensity of the diffracted beam is modulated by the angular selectivity profile.

Fig. 2
Fig. 2

(a) Experimental setup. (b) Diffraction pattern on sensor. (c) Raw profile retrieved by the CMOS array. (d) Smoothened profiles and zero-order intensity (dotted curve) plotted before (dark curve) and after (light curve) rescaling.

Fig. 3
Fig. 3

Shift of the Bragg peak and corresponding shrinkage during exposure for 100 s in a photopolymer grating. Insets show the changes in the profile width at 11 s , 23 s , and 41 s .

Fig. 4
Fig. 4

Bragg detuning when exposed to high humidity. The thickness of the grating changes with the environmental humidity. a, Original profile; b, high-humidity profile; c, last measured profile.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η ( Δ θ ) = ( ε 1 k L 2 ε 0 cos θ ) 2 sin c 2 ( 2 L ( Δ θ ) sin θ λ ) ,
η ( x ) = ( ε 1 k L 2 ε 0 cos θ ) 2 sin c 2 ( 2 L ( x cos θ ) sin θ λ d ) .

Metrics