Abstract

We propose a new type of optical resonator that consists of embedded ring resonators (ERRs). The resonators exhibit unique amplitude and phase characteristics and allow designing compact filters, modulators, and delay elements. A basic configuration of the ERRs with two rings coupled in a point-to-point manner is discussed under two operating conditions. An ERR-based microring modulator shows a high operation speed up to 30GHz. ERRs with distributed coupling are briefly described as well.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]
  2. J. E. Heebner, R. W. Boyd, and Q-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
    [CrossRef]
  3. Y. M. Landobasa, S. Darmawan, and M.-K. Chin, IEEE J. Quantum Electron. 41, 1410 (2005).
    [CrossRef]
  4. M. Sumetsky, Opt. Express 12, 2303 (2004).
    [CrossRef] [PubMed]
  5. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, IEEE Photon. Technol. Lett. 11, 1426 (1999).
    [CrossRef]
  6. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004).
    [CrossRef]
  7. S. J. Emelett and R. A. Soref, Opt. Express 13, 7840 (2005).
    [CrossRef] [PubMed]
  8. A. Yariv, Electron. Lett. 36, 321 (2000).
    [CrossRef]
  9. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
    [CrossRef]
  10. I. S. Hidayat, Y. Toyota, O. Torigoe, O. Wada, and R. Koga, Mem. Fac. Eng. Okayama Univ. 36, 73 (2002).
  11. S. Manipatruni, Q. Xu, and M. Lipson, Opt. Express 15, 13035 (2007).
    [CrossRef] [PubMed]
  12. C. A. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
    [CrossRef]
  13. L. Djaloshinski and M. Orenstein, IEEE J. Quantum Electron. 35, 737 (1999).
    [CrossRef]
  14. J. Scheuer and A. Yariv, Opt. Lett. 28, 1528 (2003).
    [CrossRef] [PubMed]
  15. Z. Zhang, M. Dainese, L. Wosinski, and M. Qiu, Opt. Express 16, 4621 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2005 (2)

Y. M. Landobasa, S. Darmawan, and M.-K. Chin, IEEE J. Quantum Electron. 41, 1410 (2005).
[CrossRef]

S. J. Emelett and R. A. Soref, Opt. Express 13, 7840 (2005).
[CrossRef] [PubMed]

2004 (3)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004).
[CrossRef]

M. Sumetsky, Opt. Express 12, 2303 (2004).
[CrossRef] [PubMed]

C. A. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

2003 (1)

2002 (2)

J. E. Heebner, R. W. Boyd, and Q-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

I. S. Hidayat, Y. Toyota, O. Torigoe, O. Wada, and R. Koga, Mem. Fac. Eng. Okayama Univ. 36, 73 (2002).

2000 (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

1999 (3)

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, IEEE Photon. Technol. Lett. 11, 1426 (1999).
[CrossRef]

L. Djaloshinski and M. Orenstein, IEEE J. Quantum Electron. 35, 737 (1999).
[CrossRef]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Barrios, C. A.

C. A. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004).
[CrossRef]

J. E. Heebner, R. W. Boyd, and Q-H. Park, J. Opt. Soc. Am. B 19, 722 (2002).
[CrossRef]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Chin, M.-K.

Y. M. Landobasa, S. Darmawan, and M.-K. Chin, IEEE J. Quantum Electron. 41, 1410 (2005).
[CrossRef]

Chu, S. T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, IEEE Photon. Technol. Lett. 11, 1426 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Dainese, M.

Darmawan, S.

Y. M. Landobasa, S. Darmawan, and M.-K. Chin, IEEE J. Quantum Electron. 41, 1410 (2005).
[CrossRef]

Djaloshinski, L.

L. Djaloshinski and M. Orenstein, IEEE J. Quantum Electron. 35, 737 (1999).
[CrossRef]

Emelett, S. J.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Heebner, J. E.

Hidayat, I. S.

I. S. Hidayat, Y. Toyota, O. Torigoe, O. Wada, and R. Koga, Mem. Fac. Eng. Okayama Univ. 36, 73 (2002).

Kaneko, T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, IEEE Photon. Technol. Lett. 11, 1426 (1999).
[CrossRef]

Koga, R.

I. S. Hidayat, Y. Toyota, O. Torigoe, O. Wada, and R. Koga, Mem. Fac. Eng. Okayama Univ. 36, 73 (2002).

Kokubun, Y.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, IEEE Photon. Technol. Lett. 11, 1426 (1999).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Landobasa, Y. M.

Y. M. Landobasa, S. Darmawan, and M.-K. Chin, IEEE J. Quantum Electron. 41, 1410 (2005).
[CrossRef]

Lee, R. K.

Lipson, M.

Little, B. E.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, IEEE Photon. Technol. Lett. 11, 1426 (1999).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

Manipatruni, S.

Orenstein, M.

L. Djaloshinski and M. Orenstein, IEEE J. Quantum Electron. 35, 737 (1999).
[CrossRef]

Pan, W.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, IEEE Photon. Technol. Lett. 11, 1426 (1999).
[CrossRef]

Park, Q-H.

Qiu, M.

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Scherer, A.

Scheuer, J.

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Soref, R. A.

Sumetsky, M.

Torigoe, O.

I. S. Hidayat, Y. Toyota, O. Torigoe, O. Wada, and R. Koga, Mem. Fac. Eng. Okayama Univ. 36, 73 (2002).

Toyota, Y.

I. S. Hidayat, Y. Toyota, O. Torigoe, O. Wada, and R. Koga, Mem. Fac. Eng. Okayama Univ. 36, 73 (2002).

Wada, O.

I. S. Hidayat, Y. Toyota, O. Torigoe, O. Wada, and R. Koga, Mem. Fac. Eng. Okayama Univ. 36, 73 (2002).

Wosinski, L.

Xu, Q.

Xu, Y.

Yariv, A.

Zhang, Z.

Electron. Lett. (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. M. Landobasa, S. Darmawan, and M.-K. Chin, IEEE J. Quantum Electron. 41, 1410 (2005).
[CrossRef]

L. Djaloshinski and M. Orenstein, IEEE J. Quantum Electron. 35, 737 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, and Y. Kokubun, IEEE Photon. Technol. Lett. 11, 1426 (1999).
[CrossRef]

J. Appl. Phys. (1)

C. A. Barrios and M. Lipson, J. Appl. Phys. 96, 6008 (2004).
[CrossRef]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mem. Fac. Eng. Okayama Univ. (1)

I. S. Hidayat, Y. Toyota, O. Torigoe, O. Wada, and R. Koga, Mem. Fac. Eng. Okayama Univ. 36, 73 (2002).

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structures of previously proposed and embedded ring resonators.

Fig. 2
Fig. 2

An ERR with point-to-point coupling and its frequency responses at the through port for (i) m 1 m 2 = even and (ii) m 1 m 2 = odd . (b) Mode distributions with cw inputs at wavelengths λ 1 and λ 3 for m 1 m 2 = even and λ 2 for m 1 m 2 = odd .

Fig. 3
Fig. 3

m 1 m 2 is an odd number, normalized transmission, and delay versus coupling between the waveguide and the ring, compared to single- and double-ring resonators.

Fig. 4
Fig. 4

ERR-based EIT effect with strong coupling is used for high-speed modulation. (b) Signal eye diagrams at 20, 25, and 30 Gbits / s , as compared to the signal generated by a single-ring modulator with the same linewidth and drive voltage. (c) Signal quality is examined when the coupling coefficient at the B area is changed by ± 5 % .

Fig. 5
Fig. 5

Mode distributions in the ERRs with distributed coupling. m 1 = 27 . (a),(b) m 1 = 23 , for symmetric and antisymmetric modes. m 1 = ( c ) 22 and (d) 21 correspond to independent resonator modes

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T F drop = τ 1 2 t 1 2 r 2 exp ( j φ 1 2 ) [ τ 2 2 exp ( j φ 2 ) 1 ] A ,
T F through = { r 1 + τ 1 4 r 1 exp ( j φ 1 ) [ τ 2 2 exp ( j φ 2 ) r 2 2 ] + τ 1 2 τ 2 t 3 2 ( 1 + r 1 2 ) exp [ j ( φ 1 + φ 2 ) 2 ] τ 2 2 r 1 r 2 2 exp ( j φ 2 2 ) } A ,
A = τ 1 4 τ 2 2 r 1 2 exp [ j ( φ 1 + φ 2 ) ] + 2 τ 1 2 τ 2 r 1 t 3 2 exp [ j ( φ 1 + φ 2 ) 2 ] r 3 2 [ τ 1 4 r 1 2 exp ( j φ 1 ) + τ 2 2 exp ( j φ 2 ) ] + 1 .

Metrics