Abstract

We present for the first time, to the best of our knowledge, a frequency-doubled Nd:GdVO4 laser operating in a cw on the pure three-level laser line at 880nm. We obtained 300mW at 440nm for 23W of incident pump power at 808nm. Moreover, with a 25% output coupler we obtained a cw power of 1.9W at the fundamental wavelength at 880nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Jia, Q. Xue, Q. Zheng, Y. Bu, and L. Qian, Appl. Phys. B 83, 245 (2006).
    [CrossRef]
  2. C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).
  3. T. Y. Fan and R. L. Byer, Opt. Lett. 12, 809 (1987).
    [CrossRef] [PubMed]
  4. S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
    [CrossRef]
  5. www.nichia.com.
  6. S. Makio, T. Miyai, M. Sato, and T. Sasaki, Jpn. J. Appl. Phys. Part 1 39, 6539 (2000).
    [CrossRef]
  7. E. Herault, F. Balembois, and P. Georges, Opt. Lett. 31, 2731 (2006).
    [CrossRef] [PubMed]
  8. W. P. Risk, J. Opt. Soc. Am. B 5, 1412 (1988).
    [CrossRef]
  9. S. Yiou, F. Balembois, and P. Georges, J. Opt. Soc. Am. B 22, 572 (2005).
    [CrossRef]

2006 (2)

F. Jia, Q. Xue, Q. Zheng, Y. Bu, and L. Qian, Appl. Phys. B 83, 245 (2006).
[CrossRef]

E. Herault, F. Balembois, and P. Georges, Opt. Lett. 31, 2731 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

2002 (1)

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

2000 (1)

S. Makio, T. Miyai, M. Sato, and T. Sasaki, Jpn. J. Appl. Phys. Part 1 39, 6539 (2000).
[CrossRef]

1988 (1)

1987 (1)

Balembois, F.

Bjurshagen, S.

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

Bu, Y.

F. Jia, Q. Xue, Q. Zheng, Y. Bu, and L. Qian, Appl. Phys. B 83, 245 (2006).
[CrossRef]

Byer, R. L.

Czeranowsky, C.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Evekull, D.

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

Fan, T. Y.

Georges, P.

Herault, E.

Heumann, E.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Huber, G.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Jia, F.

F. Jia, Q. Xue, Q. Zheng, Y. Bu, and L. Qian, Appl. Phys. B 83, 245 (2006).
[CrossRef]

Koch, R.

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

Kutovoi, S.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Makio, S.

S. Makio, T. Miyai, M. Sato, and T. Sasaki, Jpn. J. Appl. Phys. Part 1 39, 6539 (2000).
[CrossRef]

Miyai, T.

S. Makio, T. Miyai, M. Sato, and T. Sasaki, Jpn. J. Appl. Phys. Part 1 39, 6539 (2000).
[CrossRef]

Qian, L.

F. Jia, Q. Xue, Q. Zheng, Y. Bu, and L. Qian, Appl. Phys. B 83, 245 (2006).
[CrossRef]

Risk, W. P.

Sasaki, T.

S. Makio, T. Miyai, M. Sato, and T. Sasaki, Jpn. J. Appl. Phys. Part 1 39, 6539 (2000).
[CrossRef]

Sato, M.

S. Makio, T. Miyai, M. Sato, and T. Sasaki, Jpn. J. Appl. Phys. Part 1 39, 6539 (2000).
[CrossRef]

Schmidt, M.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Xue, Q.

F. Jia, Q. Xue, Q. Zheng, Y. Bu, and L. Qian, Appl. Phys. B 83, 245 (2006).
[CrossRef]

Yiou, S.

Zavartsev, Y.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Zheng, Q.

F. Jia, Q. Xue, Q. Zheng, Y. Bu, and L. Qian, Appl. Phys. B 83, 245 (2006).
[CrossRef]

Appl. Phys. B (2)

S. Bjurshagen, D. Evekull, and R. Koch, Appl. Phys. B 76, 135 (2003).
[CrossRef]

F. Jia, Q. Xue, Q. Zheng, Y. Bu, and L. Qian, Appl. Phys. B 83, 245 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. Part 1 (1)

S. Makio, T. Miyai, M. Sato, and T. Sasaki, Jpn. J. Appl. Phys. Part 1 39, 6539 (2000).
[CrossRef]

Opt. Commun. (1)

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Opt. Lett. (2)

Other (1)

www.nichia.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulation of the influence of passive losses on the intracavity power achievable at 880 and 912 nm ( 4 - mm -long, 0.2% doped crystal under 20 W incident pump power).

Fig. 2
Fig. 2

Simulation of the evolution of the linear gain at 880 nm along the crystal.

Fig. 3
Fig. 3

Simulation of the intracavity power at 880 nm versus M 2 factor of the pump beam (for 20 W of incident pump power and cavity round trip losses of 3%).

Fig. 4
Fig. 4

Experimental setup. M 1 , HT 808 nm and HR 850 900 nm ; M 2 , HR 850 900 nm and HT 1064 nm ; M 3 and M 4 filter mirrors, HR 880 nm and T = 72 % at 912 nm . M 3 Bis corresponds to the 25% output coupler used for the 880 nm extraction.

Fig. 5
Fig. 5

Laser performances in cw operation with a 25% output coupler at 880 nm .

Tables (1)

Tables Icon

Table 1 Theoretical Values Used for the Computations Corresponding to the Experimental Setup

Metrics