Abstract

We report how the linewidth and line shape of a tunable semiconductor-optical-amplifier-based fiber ring laser can be actively adjusted by applying an intracavity frequency modulation to the laser. Frequency-modulated laser operation is achieved by driving the phase modulator frequency close to the cavity axial-mode spacing, leading to a constant-amplitude laser output having a periodically varying instantaneous frequency. The resulting linewidth varies proportionally with the inverse of the frequency detuning, and it is adjustable from submegahertz to over more than 5GHz. By appropriate selection of the modulating waveform we have synthesized a near-Gaussian output line shape; other line shapes can be produced by modifying the modulating waveform. Experimental observations are in good agreement with a simple model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
    [CrossRef]
  2. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
    [CrossRef]
  3. D. Zhou, P. R. Prucnal, and I. Glesk, IEEE Photon. Technol. Lett. 10, 781 (1998).
    [CrossRef]
  4. H. Chen, G. He, F. Babin, and G. W. Schinn, Proceedings of the AOE 2006 Conference, Shanghai, October 2006, 156-158.
  5. L. Xu, I. Glesk, D. Rand, V. Baby, and P. R. Prucnal, Opt. Lett. 28, 780 (2003).
    [CrossRef] [PubMed]
  6. Q. Xu, and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
    [CrossRef]
  7. S. E. Harris and R. Targ, Appl. Phys. Lett. 5, 202 (1965).
    [CrossRef]
  8. L. M. Osterink and R. Targ, Appl. Phys. Lett. 10, 115 (1967).
    [CrossRef]
  9. D. M. Kane, S. R. Bramwell, and A. I. Ferguson, Appl. Phys. B 39, 171 (1986).
    [CrossRef]
  10. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 673 (1970).
    [CrossRef]
  11. P. F. Curley and A. I. Ferguson, Opt. Commun. 83, 85 (1991).
    [CrossRef]
  12. S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
    [CrossRef]
  13. P. S. Spencer, D. M. Kane, and K. A. Shore, J. Lightwave Technol. 17, 1072 (1999).
    [CrossRef]
  14. A. E. Siegman, Lasers (University Science Books, 1986).
  15. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 31, 760 (2006).
    [CrossRef] [PubMed]
  16. G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
    [CrossRef]

2006 (2)

R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
[CrossRef]

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 31, 760 (2006).
[CrossRef] [PubMed]

2004 (1)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
[CrossRef]

2003 (2)

1999 (1)

1998 (2)

S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
[CrossRef]

D. Zhou, P. R. Prucnal, and I. Glesk, IEEE Photon. Technol. Lett. 10, 781 (1998).
[CrossRef]

1991 (1)

P. F. Curley and A. I. Ferguson, Opt. Commun. 83, 85 (1991).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

1986 (1)

D. M. Kane, S. R. Bramwell, and A. I. Ferguson, Appl. Phys. B 39, 171 (1986).
[CrossRef]

1970 (1)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 673 (1970).
[CrossRef]

1967 (1)

L. M. Osterink and R. Targ, Appl. Phys. Lett. 10, 115 (1967).
[CrossRef]

1965 (1)

S. E. Harris and R. Targ, Appl. Phys. Lett. 5, 202 (1965).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Babin, F.

R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
[CrossRef]

H. Chen, G. He, F. Babin, and G. W. Schinn, Proceedings of the AOE 2006 Conference, Shanghai, October 2006, 156-158.

Baby, V.

Baribault, R.

R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
[CrossRef]

Bilenca, A.

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
[CrossRef]

Bouma, B. E.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 31, 760 (2006).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
[CrossRef]

Bramwell, S. R.

D. M. Kane, S. R. Bramwell, and A. I. Ferguson, Appl. Phys. B 39, 171 (1986).
[CrossRef]

Chen, H.

R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
[CrossRef]

H. Chen, G. He, F. Babin, and G. W. Schinn, Proceedings of the AOE 2006 Conference, Shanghai, October 2006, 156-158.

Curley, P. F.

P. F. Curley and A. I. Ferguson, Opt. Commun. 83, 85 (1991).
[CrossRef]

de Boer, J. F.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
[CrossRef]

Ferguson, A. I.

P. F. Curley and A. I. Ferguson, Opt. Commun. 83, 85 (1991).
[CrossRef]

D. M. Kane, S. R. Bramwell, and A. I. Ferguson, Appl. Phys. B 39, 171 (1986).
[CrossRef]

Gariépy, D.

R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
[CrossRef]

Glesk, I.

L. Xu, I. Glesk, D. Rand, V. Baby, and P. R. Prucnal, Opt. Lett. 28, 780 (2003).
[CrossRef] [PubMed]

D. Zhou, P. R. Prucnal, and I. Glesk, IEEE Photon. Technol. Lett. 10, 781 (1998).
[CrossRef]

Harris, S. E.

S. E. Harris and R. Targ, Appl. Phys. Lett. 5, 202 (1965).
[CrossRef]

He, G.

R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
[CrossRef]

H. Chen, G. He, F. Babin, and G. W. Schinn, Proceedings of the AOE 2006 Conference, Shanghai, October 2006, 156-158.

Kane, D. M.

P. S. Spencer, D. M. Kane, and K. A. Shore, J. Lightwave Technol. 17, 1072 (1999).
[CrossRef]

D. M. Kane, S. R. Bramwell, and A. I. Ferguson, Appl. Phys. B 39, 171 (1986).
[CrossRef]

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 673 (1970).
[CrossRef]

Laporta, P.

S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
[CrossRef]

Longhi, S.

S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Osterink, L. M.

L. M. Osterink and R. Targ, Appl. Phys. Lett. 10, 115 (1967).
[CrossRef]

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
[CrossRef]

Prucnal, P. R.

L. Xu, I. Glesk, D. Rand, V. Baby, and P. R. Prucnal, Opt. Lett. 28, 780 (2003).
[CrossRef] [PubMed]

D. Zhou, P. R. Prucnal, and I. Glesk, IEEE Photon. Technol. Lett. 10, 781 (1998).
[CrossRef]

Rand, D.

Schinn, G. W.

R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
[CrossRef]

H. Chen, G. He, F. Babin, and G. W. Schinn, Proceedings of the AOE 2006 Conference, Shanghai, October 2006, 156-158.

Shore, K. A.

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 673 (1970).
[CrossRef]

A. E. Siegman, Lasers (University Science Books, 1986).

Spencer, P. S.

Targ, R.

L. M. Osterink and R. Targ, Appl. Phys. Lett. 10, 115 (1967).
[CrossRef]

S. E. Harris and R. Targ, Appl. Phys. Lett. 5, 202 (1965).
[CrossRef]

Tearney, G. J.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 31, 760 (2006).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
[CrossRef]

Xu, L.

Xu, Q.

Q. Xu, and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
[CrossRef]

Yao, M.

Q. Xu, and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
[CrossRef]

Yun, S. H.

A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, Opt. Lett. 31, 760 (2006).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
[CrossRef]

Zhou, D.

D. Zhou, P. R. Prucnal, and I. Glesk, IEEE Photon. Technol. Lett. 10, 781 (1998).
[CrossRef]

Appl. Phys. B (1)

D. M. Kane, S. R. Bramwell, and A. I. Ferguson, Appl. Phys. B 39, 171 (1986).
[CrossRef]

Appl. Phys. Lett. (3)

S. E. Harris and R. Targ, Appl. Phys. Lett. 5, 202 (1965).
[CrossRef]

L. M. Osterink and R. Targ, Appl. Phys. Lett. 10, 115 (1967).
[CrossRef]

S. Longhi and P. Laporta, Appl. Phys. Lett. 73, 720 (1998).
[CrossRef]

IEE Proc.: Optoelectron. (1)

R. Baribault, H. Chen, G. He, D. Gariépy, F. Babin, and G. W. Schinn, IEE Proc.: Optoelectron. 153, 262 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 673 (1970).
[CrossRef]

G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron. 25, 2297 (1989).
[CrossRef]

Q. Xu, and M. Yao, IEEE J. Quantum Electron. 39, 1260 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, IEEE Photon. Technol. Lett. 16, 293 (2004).
[CrossRef]

D. Zhou, P. R. Prucnal, and I. Glesk, IEEE Photon. Technol. Lett. 10, 781 (1998).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

P. F. Curley and A. I. Ferguson, Opt. Commun. 83, 85 (1991).
[CrossRef]

Opt. Lett. (2)

Other (2)

H. Chen, G. He, F. Babin, and G. W. Schinn, Proceedings of the AOE 2006 Conference, Shanghai, October 2006, 156-158.

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the laser cavity.

Fig. 2
Fig. 2

(a) Measured FM laser spectrum of the SFRL for sinusoidal modulation by PM for f ax = 16.017 MHz , Δ rel = 0.2 % , and 2 Δ m = 0.54 rad ; (b) theory.

Fig. 3
Fig. 3

Laser linewidth as a function of normalized detuning, using a PM to apply a sine modulation for f ax = 16.015 MHz and 2 Δ m = 1.35 rad .

Fig. 4
Fig. 4

(a) Measured output spectra and (b) corresponding theoretical results with (a1)–(a2) sine, (b1)–(b2) square, and (c1)–(c2) sawtooth phase waveform for f ax = 12.5518 MHz , Δ rel = 0.18 % , and 2 Δ m = 0.54 rad .

Fig. 5
Fig. 5

Measured output spectra for a “tangent-like” modulation waveform for f ax = 16.85 MHz , Δ rel = 0.18 % , and 2 Δ m = 0.9 rad . (a) Modulation waveform, (b) experimental (gray curve) and curve fit (black curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) ϕ ( t T ) + ϕ m ( t ) .
ϕ ( t T ) = ϕ ( t T m δ T ) ϕ ( t ) δ T d ϕ ( t ) d t .
ϵ ( t ) E 0 exp { j [ ω o t + ω m 2 π Δ rel o t ϕ m ( t ) d t ] } ,
ϵ ( t ) E 0 exp { j [ ω o t + Γ sin ( ω m t ) ] } ,

Metrics