Abstract

Fluorescence lifetime imaging (FLIM) is used to quantitatively map the concentration of a small molecule in three dimensions in a microfluidic mixing device. The resulting experimental data are compared with computational fluid-dynamics (CFD) simulations. A line-scanning semiconfocal FLIM microscope allows the full mixing profile to be imaged in a single scan with submicrometer resolution over an arbitrary channel length from the point of confluence. Following experimental and CFD optimization, mixing times down to 1.3+/-0.4 ms were achieved with the single-layer microfluidic device.

© 2008 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription