Abstract

A Raman-amplified atomic filter is demonstrated experimentally. With a coupling light detuned from the D2 line of Rb85, a weak signal light can be amplified by a factor of 55, and the bandwidth of the filter’s transmission spectrum is narrowed to 60MHz. Moreover, the transmission wavelength is adjustable by changing the coupling-light frequency. Compared with a conventional dispersive atomic filter, this Raman-amplified atomic filter could be more efficient to suppress background noise in free-space quantum-key distribution or a laser-communication system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Appl. Opt. 21, 2069 (1982).
    [CrossRef] [PubMed]
  2. B. Yin and T. M. Shay, Opt. Lett. 16, 1617 (1991).
    [CrossRef] [PubMed]
  3. D. Dick and T. M. Shay, Opt. Lett. 16, 867 (1991).
    [CrossRef] [PubMed]
  4. C. F. Begmann, M. Alpers, and J. Höffner, Opt. Lett. 27, 1932 (2002).
    [CrossRef]
  5. C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, Can. J. Phys. 85, 111 (2007).
    [CrossRef]
  6. J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
    [CrossRef]
  7. A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
    [CrossRef]
  8. L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).
    [CrossRef]
  9. X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, Appl. Phys. Lett. 89, 191121 (2006).
    [CrossRef]
  10. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
    [CrossRef]
  11. Y. Zhu and J. Lin, Phys. Rev. A 53, 1767 (1996).
    [CrossRef] [PubMed]
  12. X. Shan, X. Sun, J. Luo, and M. Zhan, Chinese patent application 2008100462.2 (patent pending).

2007 (1)

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, Can. J. Phys. 85, 111 (2007).
[CrossRef]

2006 (2)

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, Appl. Phys. Lett. 89, 191121 (2006).
[CrossRef]

2002 (1)

2001 (1)

J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
[CrossRef]

1998 (1)

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

1996 (1)

Y. Zhu and J. Lin, Phys. Rev. A 53, 1767 (1996).
[CrossRef] [PubMed]

1994 (1)

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).
[CrossRef]

1991 (2)

1982 (1)

Alpers, M.

Alvarez, L. S.

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).
[CrossRef]

Beckers, J. M.

J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
[CrossRef]

Begmann, C. F.

Buttler, W. T.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Cacciani, A.

J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
[CrossRef]

Chen, L.

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).
[CrossRef]

Dick, D.

Höffner, J.

Hughes, R. J.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Kawahara, T. D.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, Can. J. Phys. 85, 111 (2007).
[CrossRef]

Kwiat, P. G.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Lamoreaux, S. K.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Lin, J.

Y. Zhu and J. Lin, Phys. Rev. A 53, 1767 (1996).
[CrossRef] [PubMed]

Luo, J.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, Appl. Phys. Lett. 89, 191121 (2006).
[CrossRef]

X. Shan, X. Sun, J. Luo, and M. Zhan, Chinese patent application 2008100462.2 (patent pending).

Luther, G. G.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Morgan, G. L.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Nordholt, J. E.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Peterson, C. G.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Popescu, A.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Schorstein, K.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Shan, X.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, Appl. Phys. Lett. 89, 191121 (2006).
[CrossRef]

X. Shan, X. Sun, J. Luo, and M. Zhan, Chinese patent application 2008100462.2 (patent pending).

Shay, T. M.

She, C. Y.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, Can. J. Phys. 85, 111 (2007).
[CrossRef]

Simmons, C. M.

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Sun, X.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, Appl. Phys. Lett. 89, 191121 (2006).
[CrossRef]

X. Shan, X. Sun, J. Luo, and M. Zhan, Chinese patent application 2008100462.2 (patent pending).

Tan, Z.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, Appl. Phys. Lett. 89, 191121 (2006).
[CrossRef]

Vance, J. D.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, Can. J. Phys. 85, 111 (2007).
[CrossRef]

Walldorf, D.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Walther, T.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Williams, B. P.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, Can. J. Phys. 85, 111 (2007).
[CrossRef]

Wu, Q.

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, Can. J. Phys. 85, 111 (2007).
[CrossRef]

Yeh, P.

Yin, B.

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).
[CrossRef]

B. Yin and T. M. Shay, Opt. Lett. 16, 1617 (1991).
[CrossRef] [PubMed]

Zhan, M.

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, Appl. Phys. Lett. 89, 191121 (2006).
[CrossRef]

X. Shan, X. Sun, J. Luo, and M. Zhan, Chinese patent application 2008100462.2 (patent pending).

Zhu, Y.

Y. Zhu and J. Lin, Phys. Rev. A 53, 1767 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Shan, X. Sun, J. Luo, Z. Tan, and M. Zhan, Appl. Phys. Lett. 89, 191121 (2006).
[CrossRef]

Can. J. Phys. (1)

C. Y. She, J. D. Vance, T. D. Kawahara, B. P. Williams, and Q. Wu, Can. J. Phys. 85, 111 (2007).
[CrossRef]

Exp. Astron. (1)

J. M. Beckers and A. Cacciani, Exp. Astron. 11, 133 (2001).
[CrossRef]

Opt. Commun. (1)

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

Y. Zhu and J. Lin, Phys. Rev. A 53, 1767 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, Phys. Rev. Lett. 81, 3283 (1998).
[CrossRef]

Proc. SPIE (1)

L. Chen, L. S. Alvarez, B. Yin, and T. M. Shay, Proc. SPIE 2123, 448 (1994).
[CrossRef]

Other (1)

X. Shan, X. Sun, J. Luo, and M. Zhan, Chinese patent application 2008100462.2 (patent pending).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup: P1, P2, P3, and P4 are polarizing beam splitters (PBS); P5 and P6 are Glan–Thompson prism polarizers. HW is a half-wave plate, A is an attenuator, and D1 and D2 are photodiode detectors (HAMAMATSU S5821). There is an homogenous, constant magnetic field ( 0.02     T ) in the Rb cell 2. The Rb cell 3 ( 25 mm diameter and 100 mm length) and D2 were used to monitor the frequency range scanned by the Laser2. (b) Rb 85 far-detuned three-level Λ scheme: 1 5 S 1 2 , F = 2 , 2 5 S 1 2 , F = 3 , and 3 5 P 3 2 , F = 2 & 3 . Δ c and Δ p are detunings of the coupling light and the signal light, respectively; Δ = 3.036 GHz is the frequency separation between two hyperfine energy levels of the ground state.

Fig. 2
Fig. 2

Trace 1 (black), the atomic absorption spectrum in the Rb cell 3 at room temperature. This spectrum is detected by D2 and is used to calibrate the transmission spectrum of the filters. The absorption peaks a, A, and B correspond to the Rb 87 5 S 1 2 , F = 2 5 P 3 2 , Rb 85 5 S 1 2 , F = 3 5 P 3 2 and 5 S 1 2 , F = 2 5 P 3 2 transitions, respectively. Trace 2 (black), the transmission spectrum of the Raman-amplified atomic filter with the coupling light. Trace 3 and inset (grey), the transmission spectrum of the dispersive atomic filter without the coupling light.

Fig. 3
Fig. 3

Transmission spectra with different coupling-light frequencies. The powers of the coupling light and signal light are 150 mW and 2.3 μ W , respectively. There are five peaks, tagged by letters a to e, corresponding to five different coupling-light frequencies. The separation between two neighbor frequencies is 200 MHz .

Fig. 4
Fig. 4

Amplification factor of the signal and the bandwidth of the Raman-amplified atomic filter’s transmission spectrum versus the coupling-light power (in units of milliwatts). The power of the signal light remains at 1.4 μ W .

Metrics