Abstract

Frequency combs obtained by sinusoidal phase modulation of narrowband cw lasers are widely used in the field of optical communications. However, the resulting spectral envelope of the comb is not flat. We propose a general and efficient approach to achieve flat frequency combs with tunable bandwidth. The idea is based on a two-step process. First, efficient generation of a train with a temporal flat-top-pulse profile is required. Second, we use large parabolic phase modulation in every train period to map the temporal intensity shape into the spectral domain. In this way the resulting spectral envelope is flat, and the size is tunable with the chirping rate. Two different schemes are proposed and verified through numerical simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral self-imaging of time-periodic coherent frequency combs by parabolic cross-phase modulation

Reza Maram and José Azaña
Opt. Express 21(23) 28824-28835 (2013)

Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms

Rui Wu, V. R. Supradeepa, Christopher M. Long, Daniel E. Leaird, and Andrew M. Weiner
Opt. Lett. 35(19) 3234-3236 (2010)

Discretely tunable comb spacing of a frequency comb by multilevel phase modulation of a periodic pulse train

Antonio Malacarne and José Azaña
Opt. Express 21(4) 4139-4144 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription