Abstract

We describe a new optical phase erasure characteristic of periodically poled lithium niobate (PPLN) by using cascaded second-harmonic generation and difference-frequency generation with the signal set at the quasi-phase-matching wavelength. A simple analytical expression is derived clearly explaining the operation principle. It is interesting that the optical phase erasure feature enables an all-optical format conversion from carrier-suppressed return to zero (CSRZ) to return to zero (RZ). We experimentally and theoretically demonstrate a PPLN-based 40Gbitss all-optical CSRZ-to-RZ format conversion. Moreover, tunable and multicasting CSRZ-to-RZ format conversions are also verified in the experiment.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2597 (2006).
    [CrossRef]
  2. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
    [CrossRef]
  3. J. Wang, J. Sun, C. Luo, and Q. Sun, Opt. Express 13, 7405 (2005).
    [CrossRef] [PubMed]
  4. J. Wang, J. Sun, and Q. Z. Sun, Opt. Express 15, 1690 (2007).
    [CrossRef] [PubMed]
  5. J. Wang, J. Sun, and Q. Sun, Opt. Lett. 32, 1477 (2007).
    [CrossRef] [PubMed]
  6. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, Opt. Lett. 32, 2462 (2007).
    [CrossRef] [PubMed]
  7. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, in Proceedings of the Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2008), paper JTh 33.
    [PubMed]

2007 (3)

2006 (1)

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2597 (2006).
[CrossRef]

2005 (1)

1999 (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

Fejer, M. M.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, Opt. Lett. 32, 2462 (2007).
[CrossRef] [PubMed]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2597 (2006).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, in Proceedings of the Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2008), paper JTh 33.
[PubMed]

Huang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, Opt. Lett. 32, 2462 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, in Proceedings of the Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2008), paper JTh 33.
[PubMed]

Kumar, S.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2597 (2006).
[CrossRef]

Langrock, C.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2597 (2006).
[CrossRef]

Luo, C.

McGeehan, J. E.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2597 (2006).
[CrossRef]

Sun, J.

Sun, Q.

Sun, Q. Z.

Wang, D.

Wang, J.

Willner, A. E.

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2597 (2006).
[CrossRef]

Zhang, X.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, Opt. Lett. 32, 2462 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, in Proceedings of the Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2008), paper JTh 33.
[PubMed]

Zhou, M.

IEEE Photon. Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, IEEE Photon. Technol. Lett. 11, 653 (1999).
[CrossRef]

J. Lightwave Technol. (1)

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, J. Lightwave Technol. 24, 2597 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, in Proceedings of the Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (IEEE, 2008), paper JTh 33.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic and (b), (c) operation principle of PPLN-based optical phase erasure and CSRZ-to-RZ format conversion. (b) Tunable operation. (c) Multicasting operation.

Fig. 2
Fig. 2

Measured optical spectra for PPLN-based 40 Gbits s CSRZ-to-RZ format conversion. (a) The cw pump is set at 1551.3 nm . (b) Tunable operation under different cw pump wavelengths: 1550.2, 1549.4, and 1547.2 nm . Right inset of (a) is the enlarged optical spectrum of the input CSRZ signal. Left inset of (a) and insets of (b) are the enlarged optical spectra of RZ idlers.

Fig. 3
Fig. 3

Measured temporal waveforms for the input CSRZ signal and output RZ idler corresponding to Fig. 2a. R1–R3 denote tunable RZ idlers under different cw pump wavelengths of 1550.2, 1549.4, and 1547.2 nm corresponding to Fig. 2b.

Fig. 4
Fig. 4

Measured optical spectra for PPLN-based 40 Gbits s multicasting CSRZ-to-RZ format conversion. (a) Single-to-dual channel. (b) Single-to-triple channel. Insets are the enlarged optical spectra of RZ idlers.

Fig. 5
Fig. 5

Simulation results for PPLN-based optical phase erasure and 40 Gbits s CSRZ-to-RZ format conversion. (a), (b) Optical spectra. (c), (d) Temporal waveforms. (e), (f) Eye diagrams. (g), (h) Constellation diagrams. (a), (c), (e), (g) Input CSRZ signal. (b), (d), (f), (h) Output RZ idler.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A i = 1 2 ω i ω SH κ SHG κ DFG A S 2 A P * { [ L Δ sin ( Δ L ) + cos ( Δ L ) 1 Δ 2 ] + i [ sin ( Δ L ) Δ 2 L Δ cos ( Δ L ) ] } ,
A i A S 2 A P * .
ϕ i = π + 2 ϕ S ϕ P ,

Metrics