Abstract

We report on compensation of diffraction-induced angular dispersion of ultrashort pulses up to a second order. A strategy for chromatic correction profits from high dispersion of kinoform-type zone plates. Ultraflat dispersion curves rely on a saddle point that may be tuned at a prescribed wavelength. Validity of our approach may reach the few-cycles regime.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. Martínez, Opt. Commun. 59, 229 (1986).
    [CrossRef]
  2. Z. L. Horváth, Z. Benko, A. P. Kovacs, H. A. Hazim, and Z. Bor, Opt. Eng. (Bellingham) 32, 2491 (1993).
    [CrossRef]
  3. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, and B. Loiseaux, Opt. Lett. 30, 1479 (2005).
    [CrossRef] [PubMed]
  4. J. Amako, K. Nagasaka, and N. Kazuhiro, Opt. Lett. 27, 969 (2002).
    [CrossRef]
  5. G. Li, C. Zhou, and E. Dai, J. Opt. Soc. Am. A 22, 767 (2005).
    [CrossRef]
  6. C. J. Zapata-Rodríguez and M. T. Caballero, Opt. Lett. 32, 2472 (2007).
    [CrossRef] [PubMed]
  7. C. J. Zapata-Rodríguez and M. T. Caballero, Opt. Express 15, 15308 (2007).
    [CrossRef] [PubMed]
  8. D. N. Sitter and W. T. Rhodes, Appl. Opt. 29, 3789 (1990).
    [CrossRef] [PubMed]

2007 (2)

2005 (2)

2002 (1)

1993 (1)

Z. L. Horváth, Z. Benko, A. P. Kovacs, H. A. Hazim, and Z. Bor, Opt. Eng. (Bellingham) 32, 2491 (1993).
[CrossRef]

1990 (1)

1986 (1)

O. E. Martínez, Opt. Commun. 59, 229 (1986).
[CrossRef]

Amako, J.

Audouard, E.

Benko, Z.

Z. L. Horváth, Z. Benko, A. P. Kovacs, H. A. Hazim, and Z. Bor, Opt. Eng. (Bellingham) 32, 2491 (1993).
[CrossRef]

Bor, Z.

Z. L. Horváth, Z. Benko, A. P. Kovacs, H. A. Hazim, and Z. Bor, Opt. Eng. (Bellingham) 32, 2491 (1993).
[CrossRef]

Caballero, M. T.

Dai, E.

Hazim, H. A.

Z. L. Horváth, Z. Benko, A. P. Kovacs, H. A. Hazim, and Z. Bor, Opt. Eng. (Bellingham) 32, 2491 (1993).
[CrossRef]

Horváth, Z. L.

Z. L. Horváth, Z. Benko, A. P. Kovacs, H. A. Hazim, and Z. Bor, Opt. Eng. (Bellingham) 32, 2491 (1993).
[CrossRef]

Huignard, J.-P.

Huot, N.

Kazuhiro, N.

Kovacs, A. P.

Z. L. Horváth, Z. Benko, A. P. Kovacs, H. A. Hazim, and Z. Bor, Opt. Eng. (Bellingham) 32, 2491 (1993).
[CrossRef]

Larat, C.

Li, G.

Loiseaux, B.

Martínez, O. E.

O. E. Martínez, Opt. Commun. 59, 229 (1986).
[CrossRef]

Nagasaka, K.

Rhodes, W. T.

Sanner, N.

Sitter, D. N.

Zapata-Rodríguez, C. J.

Zhou, C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of dispersive ZP doublet.

Fig. 2
Fig. 2

Dispersion curves (insets) with a stationary point (A, B, and C in black) and an inflection point (A, D, and E in gray) at λ 0 .

Fig. 3
Fig. 3

Plot of ( a 1 Z 1 ) + (left) and ( a 1 Z 1 ) (right) given in Eq. (6) for different values of Z n . Also ( d Z 2 ) of Eq. (7) is shown in the plots.

Fig. 4
Fig. 4

Schematic of arrangement.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

1 R + a 1 + 1 d f 2 = 1 f 1 ,
θ = θ 1 λ λ 0 + θ 2 ( λ λ 0 ) 2 + θ 3 ( λ λ 0 ) 3 ,
μ = a 1 ( Z 1 + Z 2 ) Z 1 Z 2 d Z 2 ,
ν = a 1 d Z 1 Z 2 .
1 + 2 μ + 3 ν = 0 ,
μ + 3 ν = 0 .
( a 1 Z 1 ) ± = 1 ± 4 3 ( Z 1 Z 2 + 1 4 ) 2 ( Z 1 Z 2 + 1 ) ,
d Z 2 = 1 3 ( a 1 Z 1 ) 1 .
a 2 Z 2 = λ 0 ( λ 2 λ 0 ) λ 2 3 λ λ 0 + 3 λ 0 2 .
R Z 2 = λ 2 3 λ λ 0 + 3 λ 0 2 3 λ 2 ,
Φ ( r , z ) = A ̃ ( q ) exp ( i k q r ) exp ( i k m z ) d 2 q ,
A ̃ ( q ) = S M 2 A ( M q ) exp [ i k ( Z 2 + a 2 ) q 2 2 ] ,

Metrics