Abstract

We have developed a tunable, narrow-bandwidth (<2cm1) mid-infrared (MIR) optical parametric system with a large-aperture periodically poled Mg-doped LiNbO3 (LA-PPMgLN)-based high-energy pump source. The system has a continuously tunable tuning range from 4.6to11.2μm and produces a maximum output energy of 2.0mJ at 5.1μm. Practical use of the MIR source is demonstrated by MIR-UV double-resonance spectroscopy of jet-cooled acetanilide.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ganikhanov, T. Caughey, and K. L. Vodopyanov, J. Opt. Soc. Am. B 18, 818 (2001).
    [CrossRef]
  2. M. Gerhards, Opt. Commun. 241, 493 (2004).
    [CrossRef]
  3. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, and M. M. Fejer, Opt. Lett. 29, 1912 (2004).
    [CrossRef] [PubMed]
  4. K. L. Vodopyanov and P. G. Schunemann, Opt. Lett. 28, 441 (2003).
    [CrossRef] [PubMed]
  5. M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 88, 37 (2007).
    [CrossRef]
  6. H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
    [CrossRef]
  7. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, Opt. Lett. 32, 2996 (2007).
    [CrossRef] [PubMed]
  8. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, Opt. Lett. 31, 3149 (2006).
    [CrossRef] [PubMed]
  9. S. Tanabe, T. Ebata, M. Fujii, and N. Mikami, Chem. Phys. Lett. 215, 347 (1993).
    [CrossRef]
  10. R. N. Pribble, A. W. Garrett, K. Haber, and T. S. Zwier, J. Chem. Phys. 103, 531 (1995).
    [CrossRef]
  11. National Institute of Standards and Technology (NIST) Standard Reference Database 69 (June 2005), http://webbook.nist.gov/chemistry/.

2007

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 88, 37 (2007).
[CrossRef]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, Opt. Lett. 32, 2996 (2007).
[CrossRef] [PubMed]

2006

2004

2003

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

K. L. Vodopyanov and P. G. Schunemann, Opt. Lett. 28, 441 (2003).
[CrossRef] [PubMed]

2001

1995

R. N. Pribble, A. W. Garrett, K. Haber, and T. S. Zwier, J. Chem. Phys. 103, 531 (1995).
[CrossRef]

1993

S. Tanabe, T. Ebata, M. Fujii, and N. Mikami, Chem. Phys. Lett. 215, 347 (1993).
[CrossRef]

Caughey, T.

Ebata, T.

S. Tanabe, T. Ebata, M. Fujii, and N. Mikami, Chem. Phys. Lett. 215, 347 (1993).
[CrossRef]

Fejer, M. M.

Fujii, M.

Ganikhanov, F.

Garrett, A. W.

R. N. Pribble, A. W. Garrett, K. Haber, and T. S. Zwier, J. Chem. Phys. 103, 531 (1995).
[CrossRef]

Gerhards, M.

M. Gerhards, Opt. Commun. 241, 493 (2004).
[CrossRef]

Haber, K.

R. N. Pribble, A. W. Garrett, K. Haber, and T. S. Zwier, J. Chem. Phys. 103, 531 (1995).
[CrossRef]

Harris, J. S.

Henriksson, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 88, 37 (2007).
[CrossRef]

Ishizuki, H.

Kuo, P. S.

Laurell, F.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 88, 37 (2007).
[CrossRef]

Levi, O.

Mikami, N.

S. Tanabe, T. Ebata, M. Fujii, and N. Mikami, Chem. Phys. Lett. 215, 347 (1993).
[CrossRef]

Pasiskevicius, V.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 88, 37 (2007).
[CrossRef]

Pinguet, T. J.

Pribble, R. N.

R. N. Pribble, A. W. Garrett, K. Haber, and T. S. Zwier, J. Chem. Phys. 103, 531 (1995).
[CrossRef]

Saikawa, J.

Schunemann, P. G.

Shoji, I.

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

Taira, T.

Tanabe, S.

S. Tanabe, T. Ebata, M. Fujii, and N. Mikami, Chem. Phys. Lett. 215, 347 (1993).
[CrossRef]

Tiihonen, M.

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 88, 37 (2007).
[CrossRef]

Vodopyanov, K. L.

Zwier, T. S.

R. N. Pribble, A. W. Garrett, K. Haber, and T. S. Zwier, J. Chem. Phys. 103, 531 (1995).
[CrossRef]

Appl. Phys. B

M. Henriksson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Appl. Phys. B 88, 37 (2007).
[CrossRef]

Appl. Phys. Lett.

H. Ishizuki, I. Shoji, and T. Taira, Appl. Phys. Lett. 82, 4062 (2003).
[CrossRef]

Chem. Phys. Lett.

S. Tanabe, T. Ebata, M. Fujii, and N. Mikami, Chem. Phys. Lett. 215, 347 (1993).
[CrossRef]

J. Chem. Phys.

R. N. Pribble, A. W. Garrett, K. Haber, and T. S. Zwier, J. Chem. Phys. 103, 531 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

M. Gerhards, Opt. Commun. 241, 493 (2004).
[CrossRef]

Opt. Lett.

Other

National Institute of Standards and Technology (NIST) Standard Reference Database 69 (June 2005), http://webbook.nist.gov/chemistry/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the ZGP-DFG system. The ZGP-DFG system was pumped with a 2.1 μ m narrow-bandwidth LA-PPMgLN-based parametric MOPA system and seeded with a tunable LN-DFG system.

Fig. 2
Fig. 2

Tuning characteristics of the ZGP-DFG system (closed circles) and the LN-DFG system (open circles). Inset shows the intensity distribution of the ZGP-DFG system at 5.3 μ m .

Fig. 3
Fig. 3

Comparison of absorption spectra of the water bending vibration in the air measured with the DFG system and FT-IR (at a resolution of 2 cm 1 ). The measured bandwidth of the DFG system was 1.6 cm 1 .

Fig. 4
Fig. 4

(a) Excitation scheme for MIR-UV double-resonance spectroscopy. S 0 , S 1 , I P 0 , and v are ground, electronically excited, ionic, and vibrationally excited states, respectively. (b) Ionization detected MIR spectrum of the jet-cooled acetanilide.

Metrics