Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF) to accommodate the varying sizes of tubular structures across patients and along the tree within the same patient. Yet the extended DOF needs to be accomplished without sacrificing resolution while maintaining sufficient sensitivity and speed of imaging. In this Letter, we report on the measured resolution and sensitivity achieved with a custom-made micro-optic axicon lens designed to theoretically achieve an 8mm DOF. A measured invariant resolution of 8μm is demonstrated across a 4mm measured DOF using the micro-optic axicon while achieving an invariant sensitivity of 80dB with a 25mW input power. Double-pass Bessel beam spectral-domain optical coherence tomography with an axicon micro-optic lens (i.e., <1mm in diameter) is, for the first time to our knowledge, demonstrated in a biological sample demonstrating invariant resolution and signal-to-noise ratio across a 4mm measured DOF, which is compared to Gaussian beam imaging.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography

Wei Wang, Guangying Wang, Jun Ma, Linghao Cheng, and Bai-Ou Guan
Opt. Express 27(2) 358-366 (2019)

Endoscopic micro-optical coherence tomography with extended depth of focus using a binary phase spatial filter

Junyoung Kim, Jingchao Xing, Hyeong Soo Nam, Joon Woo Song, Jin Won Kim, and Hongki Yoo
Opt. Lett. 42(3) 379-382 (2017)

Imaging behind opaque obstacle: a potential method for guided in vitro needle placement

Sandeep Menon Perinchery, Anant Shinde, and Murukeshan Vadakke Matham
Biomed. Opt. Express 7(12) 5308-5324 (2016)


  • View by:
  • |
  • |
  • |

  1. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, Opt. Express 14, 3238 (2006).
    [Crossref] [PubMed]
  2. J. Rolland, J. O'Daniel, C. Akcay, T. Delemos, K. Lee, K. Cheong, E. Clarkson, R. Chakrabarti, and R. Ferris, J. Opt. Soc. Am. A 22, 1132 (2005).
  3. P. Meemon, K. Lee, S. Murali, and J. Rolland, Appl. Opt. 47, 2452 (2008).
    [Crossref] [PubMed]
  4. S. Murali, K. Lee, and J. Rolland, Opt. Express 15, 15854 (2007).
    [Crossref] [PubMed]
  5. J. McLeod, J. Opt. Soc. Am. 44, 592 (1954).
  6. Z. Ding, H. Ren, Y. Zhao, J. Nelson, and Z. Chen, Opt. Lett. 27, 243 (2002).
  7. R. Leitgeb, M. Villiger, A. Bachmann, L. Steinmann, and T. Lasser, Opt. Lett. 31, 2450 (2006).
    [Crossref] [PubMed]
  8. K. Lee, C. Akcay, T. Delemos, E. Clarkson, and J. Rolland, Appl. Opt. 44, 4009 (2005).
    [Crossref] [PubMed]

2008 (1)

2007 (1)

2006 (2)

2005 (2)

2002 (1)

1954 (1)

Akcay, C.

Bachmann, A.

Brenner, M.

Chakrabarti, R.

Chen, Z.

Cheong, K.

Clarkson, E.

Delemos, T.

Ding, Z.

Ferris, R.

Guo, S.

Lasser, T.

Lee, K.

Leitgeb, R.

McLeod, J.

Meemon, P.

Mukai, D.

Murali, S.

Nelson, J.

O'Daniel, J.

Ren, H.

Rolland, J.

Steinmann, L.

Villiger, M.

Xie, T.

Zhao, Y.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (2)

Fig. 1
Fig. 1 (a) Measured lateral resolution over focal range parameter d using either a micro-optic axicon of 170° apex angle illuminated by a 600 μ m collimated beam or an 8 mm focal length lens operating at a NA of 0.037. Point A corresponds to the focus depth associated with the rounded apex of the axicon lens. (b) Illumination efficiencies versus d, (c) setup to measure collection efficiencies, (d) measured collection efficiencies versus d, (e) measured system sensitivities versus d.
Fig. 2
Fig. 2 1 mm × 1 mm SD-OCT images of an African frog (Xenopus laevis) tadpole located at various d values acquired using a 600 μ m effective diameter axicon micro-optic lens (top row) and a 0.037 NA conventional lens (bottom row).