Abstract

Spontaneous cascaded Raman amplification is demonstrated as a practical and efficient means of power transfer from telecommunications wavelengths to mid-IR wavelength bands through use of conventional silica fibers and amplifiers. We show that silica fibers possessing normal dispersion over all near-IR and mid-IR wavelengths can facilitate 37% and 16% efficient Raman power conversion from 1.53μm to 2.15 and 2.41μm wavelength bands, respectively, using nanosecond pulses from an all-fiber laser source. In contrast to supercontinuum-based techniques for long-wavelength generation, the high levels of Raman gain generated at these wavelength bands could produce useful optical amplification necessary for the development of numerous mid-IR laser sources.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).
  2. P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
    [CrossRef]
  3. L. Esterowitz, R. Allen, and I. Aggarwal, Electron. Lett. 24, 1104 (1988).
    [CrossRef]
  4. C. A. Xia, M. Kumar, O. R. Kulkarni, M. N. Islam, F. L. Terry, and M. J. Freeman, Opt. Lett. 31, 2553 (2006).
    [CrossRef] [PubMed]
  5. R. H. Stolen, C. Lee, and R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984).
    [CrossRef]
  6. C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
    [CrossRef]
  7. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, Opt. Lett. 22, 298 (1997).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989), Chap. 8.
  9. H. Xie, Z. C. Wang, and J. X. Fang, Phys. Status Solidi A 96, 483 (1986).
    [CrossRef]
  10. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  11. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, Opt. Express 14, 7924 (2006).
    [CrossRef] [PubMed]
  12. R. H. Stolen, C. Lee, and R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984).
    [CrossRef]

2006

2001

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

1998

P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
[CrossRef]

1997

1988

L. Esterowitz, R. Allen, and I. Aggarwal, Electron. Lett. 24, 1104 (1988).
[CrossRef]

1986

H. Xie, Z. C. Wang, and J. X. Fang, Phys. Status Solidi A 96, 483 (1986).
[CrossRef]

1984

1977

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Aggarwal, I.

L. Esterowitz, R. Allen, and I. Aggarwal, Electron. Lett. 24, 1104 (1988).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989), Chap. 8.

Aitken, B. G.

Allen, R.

L. Esterowitz, R. Allen, and I. Aggarwal, Electron. Lett. 24, 1104 (1988).
[CrossRef]

Bayya, S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Busse, L. E.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Chernikov, S. V.

Cohen, L. G.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Currie, S. C.

Esterowitz, L.

L. Esterowitz, R. Allen, and I. Aggarwal, Electron. Lett. 24, 1104 (1988).
[CrossRef]

Fang, J. X.

H. Xie, Z. C. Wang, and J. X. Fang, Phys. Status Solidi A 96, 483 (1986).
[CrossRef]

Freeman, M. J.

French, W. G.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Gapontsev, V. P.

Islam, M. N.

Jain, R. K.

Janker, B.

P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
[CrossRef]

Kormannb, R.

P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
[CrossRef]

Kuditcher, A.

Kulkarni, O. P.

Kulkarni, O. R.

Kumar, M.

Kung, F.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Lee, C.

Lee, D. J.

Lin, C.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Maurera, K.

P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
[CrossRef]

McCarthy, J. E.

Mucke, R.

P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
[CrossRef]

Nguyen, V.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Nolan, D. A.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Powley, M. L.

Pureza, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Sanghera, J. S.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Shaw, L. B.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Slemra, F.

P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
[CrossRef]

Stolen, R. H.

Tasker, G. W.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Taylor, J. R.

Terry, F. L.

Thielen, P.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Wang, Z. C.

H. Xie, Z. C. Wang, and J. X. Fang, Phys. Status Solidi A 96, 483 (1986).
[CrossRef]

Werlea, P.

P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
[CrossRef]

Xia, C.

Xia, C. A.

Xie, H.

H. Xie, Z. C. Wang, and J. X. Fang, Phys. Status Solidi A 96, 483 (1986).
[CrossRef]

Zhu, Y.

Appl. Phys. B

P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998).
[CrossRef]

Electron. Lett.

L. Esterowitz, R. Allen, and I. Aggarwal, Electron. Lett. 24, 1104 (1988).
[CrossRef]

J. Opt. Soc. Am. B

J. Optoelectron. Adv. Mater.

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).

Opt. Commun.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi A

H. Xie, Z. C. Wang, and J. X. Fang, Phys. Status Solidi A 96, 483 (1986).
[CrossRef]

Other

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Dispersion versus NA and wavelength for a silica fiber ( λ c = 1.45 μ m ) . (b) Computed dispersion and (c) measured loss for NUFERN UHNA7 silica fiber.

Fig. 2
Fig. 2

Schematic of fiber-based pulsed laser source.

Fig. 3
Fig. 3

(a) Measured spectral intensity versus wavelength ( μ m ) and laser power. (b) Fraction of laser power in each order versus incident laser power. (c) Measured (circles) and estimated (solid curve) total power efficiency.

Fig. 4
Fig. 4

(a) and (b) Measured pulse profiles. (c) and (d) Simulated pulse profiles for comparison.

Metrics