Abstract

An IR laser of 940nm wavelength induced photochromic reaction in acrylate that contained both spirobenzopyran and rare-earth doped oxide (Gd2O2S:YbEr). The rare-earth elements were excited by two 940nm photons and emitted a 550nm photon, which caused photochromic isomerization of spirobenzopyran. This acrylate turned to its original orange color by either thermal relaxation or ultraviolet irradiation, and was bleached again by IR laser irradiation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Takeshita and M. Irie, J. Org. Chem. 63, 6643 (1998).
    [CrossRef]
  2. K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
    [CrossRef]
  3. S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, ChemPhysChem 6, 2300 (2005).
    [CrossRef] [PubMed]
  4. L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
    [CrossRef]
  5. J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, J. Appl. Phys. 60, 4262 (1986).
    [CrossRef]
  6. D. Matsuura, Appl. Phys. Lett. 81, 4526 (2002).
    [CrossRef]
  7. T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
    [CrossRef]
  8. J. Y. Allain, M. Monerie, and H. Poignant, Electron. Lett. 28, 111 (1992).
    [CrossRef]
  9. M. Saito and Y. Tsubokura, Appl. Opt. 45, 8019 (2006).
    [CrossRef] [PubMed]
  10. M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, Appl. Phys. Lett. 91, 061114 (2007).
    [CrossRef]
  11. M. Saito, A. Honda, and K. Uchida, J. Lightwave Technol. 21, 2255 (2003).
    [CrossRef]
  12. D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, J. Appl. Phys. 62, 266 (1987).
    [CrossRef]

2007 (1)

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, Appl. Phys. Lett. 91, 061114 (2007).
[CrossRef]

2006 (1)

2005 (1)

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, ChemPhysChem 6, 2300 (2005).
[CrossRef] [PubMed]

2003 (2)

K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
[CrossRef]

M. Saito, A. Honda, and K. Uchida, J. Lightwave Technol. 21, 2255 (2003).
[CrossRef]

2002 (1)

D. Matsuura, Appl. Phys. Lett. 81, 4526 (2002).
[CrossRef]

1998 (1)

M. Takeshita and M. Irie, J. Org. Chem. 63, 6643 (1998).
[CrossRef]

1992 (1)

J. Y. Allain, M. Monerie, and H. Poignant, Electron. Lett. 28, 111 (1992).
[CrossRef]

1990 (1)

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

1987 (1)

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, J. Appl. Phys. 62, 266 (1987).
[CrossRef]

1986 (1)

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, J. Appl. Phys. 60, 4262 (1986).
[CrossRef]

1969 (1)

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
[CrossRef]

Allain, J. Y.

J. Y. Allain, M. Monerie, and H. Poignant, Electron. Lett. 28, 111 (1992).
[CrossRef]

Drexhage, M. G.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, J. Appl. Phys. 62, 266 (1987).
[CrossRef]

Fujiuchi, A.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, Appl. Phys. Lett. 91, 061114 (2007).
[CrossRef]

Geusic, J. E.

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
[CrossRef]

Grodkiewicz, W. H.

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, J. Appl. Phys. 60, 4262 (1986).
[CrossRef]

Guggenheim, H. J.

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
[CrossRef]

Hebert, T.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Honda, A.

Irie, M.

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, ChemPhysChem 6, 2300 (2005).
[CrossRef] [PubMed]

K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
[CrossRef]

M. Takeshita and M. Irie, J. Org. Chem. 63, 6643 (1998).
[CrossRef]

Johnson, L. F.

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
[CrossRef]

Kawai, T.

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, ChemPhysChem 6, 2300 (2005).
[CrossRef] [PubMed]

Kushida, T.

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
[CrossRef]

Lenth, W.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Macfarlane, R. M.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Matsuura, D.

D. Matsuura, Appl. Phys. Lett. 81, 4526 (2002).
[CrossRef]

Mikulyak, R. M.

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, J. Appl. Phys. 60, 4262 (1986).
[CrossRef]

Monerie, M.

J. Y. Allain, M. Monerie, and H. Poignant, Electron. Lett. 28, 111 (1992).
[CrossRef]

Murakami, A.

K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
[CrossRef]

Nakamura, S.

K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
[CrossRef]

Ota, N.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, Appl. Phys. Lett. 91, 061114 (2007).
[CrossRef]

Poignant, H.

J. Y. Allain, M. Monerie, and H. Poignant, Electron. Lett. 28, 111 (1992).
[CrossRef]

Saita, S.

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, ChemPhysChem 6, 2300 (2005).
[CrossRef] [PubMed]

Saito, M.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, Appl. Phys. Lett. 91, 061114 (2007).
[CrossRef]

M. Saito and Y. Tsubokura, Appl. Opt. 45, 8019 (2006).
[CrossRef] [PubMed]

K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
[CrossRef]

M. Saito, A. Honda, and K. Uchida, J. Lightwave Technol. 21, 2255 (2003).
[CrossRef]

Shingh, S.

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
[CrossRef]

Sibley, W. A.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, J. Appl. Phys. 62, 266 (1987).
[CrossRef]

Suscavage, M.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, J. Appl. Phys. 62, 266 (1987).
[CrossRef]

Takata, A.

K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
[CrossRef]

Takeshita, M.

M. Takeshita and M. Irie, J. Org. Chem. 63, 6643 (1998).
[CrossRef]

Tsubokura, Y.

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, Appl. Phys. Lett. 91, 061114 (2007).
[CrossRef]

M. Saito and Y. Tsubokura, Appl. Opt. 45, 8019 (2006).
[CrossRef] [PubMed]

Uchida, K.

K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
[CrossRef]

M. Saito, A. Honda, and K. Uchida, J. Lightwave Technol. 21, 2255 (2003).
[CrossRef]

van der Ziel, J. P.

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, J. Appl. Phys. 60, 4262 (1986).
[CrossRef]

Van Uitert, L. G.

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, J. Appl. Phys. 60, 4262 (1986).
[CrossRef]

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
[CrossRef]

Wannemacher, R.

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

Yamaguchi, T.

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, ChemPhysChem 6, 2300 (2005).
[CrossRef] [PubMed]

Yeh, D. C.

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, J. Appl. Phys. 62, 266 (1987).
[CrossRef]

Adv. Funct. Mater. (1)

K. Uchida, A. Takata, M. Saito, A. Murakami, S. Nakamura, and M. Irie, Adv. Funct. Mater. 13, 755 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Saito, Y. Tsubokura, N. Ota, and A. Fujiuchi, Appl. Phys. Lett. 91, 061114 (2007).
[CrossRef]

D. Matsuura, Appl. Phys. Lett. 81, 4526 (2002).
[CrossRef]

T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, Appl. Phys. Lett. 57, 1727 (1990).
[CrossRef]

L. F. Johnson, J. E. Geusic, H. J. Guggenheim, T. Kushida, S. Shingh, and L. G. Van Uitert, Appl. Phys. Lett. 15, 48 (1969).
[CrossRef]

ChemPhysChem (1)

S. Saita, T. Yamaguchi, T. Kawai, and M. Irie, ChemPhysChem 6, 2300 (2005).
[CrossRef] [PubMed]

Electron. Lett. (1)

J. Y. Allain, M. Monerie, and H. Poignant, Electron. Lett. 28, 111 (1992).
[CrossRef]

J. Appl. Phys. (2)

J. P. van der Ziel, L. G. Van Uitert, W. H. Grodkiewicz, and R. M. Mikulyak, J. Appl. Phys. 60, 4262 (1986).
[CrossRef]

D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, J. Appl. Phys. 62, 266 (1987).
[CrossRef]

J. Lightwave Technol. (1)

J. Org. Chem. (1)

M. Takeshita and M. Irie, J. Org. Chem. 63, 6643 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Photograph of acrylate plates ( 4 mm thickness) containing spirobenzopyran of 0 5 mM . (b) Transmission spectra of spirobenzopyran in acrylate. Numerals beside the curves denote spirobenzopyran concentrations.

Fig. 2
Fig. 2

(a) Fluorescence spectrum of Gd 2 O 2 S : Yb Er . As shown in the inset, fluorescence was emitted from the sample center where a 940 nm laser beam was irradiated. (b) Excitation and fluorescence processes of Yb 3 + and Er 3 + . (c) Fluorescence intensity as a function of excitation laser power.

Fig. 3
Fig. 3

(a) Transmission spectra of acrylate plates containing spirobenzopyran and Gd 2 O 2 S : Yb Er (thin curves, 1 mM and 4 mm thickness, thick curves, 5 mM and 6 mm thickness). Numerals beside the curves denote times from start of IR laser irradiation. (b) Temporal change of the optical density ( 550 nm ) during IR laser irradiation process.

Fig. 4
Fig. 4

Transmission spectra of acrylate plates ( 3 mm thickness) containing spirobenzopyran ( 0.5 mM ) and Gd 2 O 2 S : Yb Er ( 10 kg m 3 ) . (a) and (b) show the coloration process (UV exposure) and the bleaching process (thermal relaxation), respectively. Numerals beside the curves denote times from start or stop of UV irradiation.

Fig. 5
Fig. 5

Transmission spectra during a 940 nm laser irradiation process. Laser power was (a) 250 or (b) 800 mW . Numerals beside the curves denote times from start of irradiation. (c) Temporal change of the optical density at 550 nm . Numerals beside the curves denote laser powers. (d) Photographs of a sample before and after UV lamp and IR laser irradiation.

Metrics