Abstract

We report the optical characterization of a metal wiregrid micropolarizer array for IR imaging polarimetry. The micropolarizers are designed for operation in the 1.55.0μm band with a specially designed thin SiO2 layer between the silicon substrate and the wiregrids to improve the performance at the shorter wavelengths. Deep-UV projection lithography is used to fabricate 140-nm-deep wiregrids with a 400nm period. The extinction ratio and the transmission coefficient are measured with a tunable IR laser. A TM transmission coefficient greater than 70% with an extinction ratio greater than 104 is achieved for the midwave-IR region while maintaining an extinction ratio better than 102 for the near-IR region above 1.5μm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Rogne, F. G. Smith, and J. E. Rice, Proc. SPIE 1317, 242 (1990).
    [CrossRef]
  2. C. S. L. Chun, D. L. Fleming, and E. J. Torok, Proc. SPIE 2234, 275 (1994).
    [CrossRef]
  3. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, J. Opt. Soc. Am. A 16, 1168 (1999).
    [CrossRef]
  4. G. R. Bird and M. Parrish, Jr., J. Opt. Soc. Am. 50, 886 (1960).
    [CrossRef]
  5. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, Opt. Lett. 33, 258 (2008).
    [CrossRef] [PubMed]
  6. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
    [CrossRef]
  7. M. G. Moharam, E. B. Grann, and D. A. Pommet, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  8. E. D. Palik, Handbook of Optical Constants of Solid (Academic, 1998).
  9. J. J. Zayhowski, Opt. Lett. 22, 169 (1997).
    [CrossRef] [PubMed]
  10. P. E. Powers, K. W. Aniolek, T. J. Kulp, B. R. Richman, and S. E. Bisson, Opt. Lett. 23, 1886 (1998).
    [CrossRef]

2008 (1)

2006 (1)

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1995 (1)

1994 (1)

C. S. L. Chun, D. L. Fleming, and E. J. Torok, Proc. SPIE 2234, 275 (1994).
[CrossRef]

1990 (1)

T. J. Rogne, F. G. Smith, and J. E. Rice, Proc. SPIE 1317, 242 (1990).
[CrossRef]

1960 (1)

Akioka, S.

Aniolek, K. W.

Bird, G. R.

Bisson, S. E.

Chen, L.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Chun, C. S. L.

C. S. L. Chun, D. L. Fleming, and E. J. Torok, Proc. SPIE 2234, 275 (1994).
[CrossRef]

Deguzman, P. C.

Deng, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Fleming, D. L.

C. S. L. Chun, D. L. Fleming, and E. J. Torok, Proc. SPIE 2234, 275 (1994).
[CrossRef]

Grann, E. B.

Jones, M. W.

Kintaka, K.

Kulp, T. J.

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Liu, X.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Meier, J. T.

Moharam, M. G.

Nishii, J.

Nordin, G. P.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solid (Academic, 1998).

Parrish, M.

Pommet, D. A.

Powers, P. E.

Rice, J. E.

T. J. Rogne, F. G. Smith, and J. E. Rice, Proc. SPIE 1317, 242 (1990).
[CrossRef]

Richman, B. R.

Rogne, T. J.

T. J. Rogne, F. G. Smith, and J. E. Rice, Proc. SPIE 1317, 242 (1990).
[CrossRef]

Saito, M.

Sciortino, P.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Smith, F. G.

T. J. Rogne, F. G. Smith, and J. E. Rice, Proc. SPIE 1317, 242 (1990).
[CrossRef]

Torok, E. J.

C. S. L. Chun, D. L. Fleming, and E. J. Torok, Proc. SPIE 2234, 275 (1994).
[CrossRef]

Walters, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Wang, J. J.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Yamada, I.

Yamagishi, Y.

Zayhowski, J. J.

Appl. Phys. Lett. (1)

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Lett. (3)

Proc. SPIE (2)

T. J. Rogne, F. G. Smith, and J. E. Rice, Proc. SPIE 1317, 242 (1990).
[CrossRef]

C. S. L. Chun, D. L. Fleming, and E. J. Torok, Proc. SPIE 2234, 275 (1994).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solid (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of micropolarizer structure. A plane wave illustrates the silicon substrate at normal incidence. A silica layer is sandwiched between the alunimum grating and the silicon substrate. The period of the grating is 400 nm with a grating height of 140 nm and a duty cycle of 0.7.

Fig. 2
Fig. 2

Micropolarizer performance with respect to silica layer thickness: (a) ER versus wavelength, (b) TM transmission coefficient versus wavelength. The thickness of silica layer is shown in the figure legends.

Fig. 3
Fig. 3

SEM image of micropolarizer array with an AFM image shown in the inset.

Fig. 4
Fig. 4

Experimental setup for optical characterization of the micropolarizer.

Fig. 5
Fig. 5

Comparison of experimental results and simulation results: (a) ER versus wavelength, (b) TM transmission coefficient versus wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ER = V p V s V O V F .

Metrics