Abstract

Generation of phase noise in an amplitude limiter using saturation of a fiber-optic parametric amplifier is analyzed. The analysis is based on the coupled differential equations for the amplitudes and phases of pump, signal, and idler involved in the four-wave mixing interaction. The equations are linearized about small fluctuations at operation points and are solved, which results in relations between the input and output phase and amplitude noise. These relations are used in deriving expressions of amplitude signal-to-noise ratio (SNR) and variance of phase noise of the output signal in terms of SNRs of input signal and pump. It is shown that optimum pump power exists for minimum output phase noise in the output signal.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon and L. F. Mollenauer, Opt. Lett. 15, 1351 (1990).
    [Crossref] [PubMed]
  2. K. Inoue, Electron. Lett. 36, 1016 (2000).
    [Crossref]
  3. M. Matsumoto, IEEE Photon. Technol. Lett. 17, 1055 (2005).
    [Crossref]
  4. K. Croussore and G. Li, Electron. Lett. 43, 177 (2007).
    [Crossref]
  5. M. Matsumoto and K. Sanuki, Opt. Express 15, 8094 (2007).
    [Crossref] [PubMed]
  6. F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
    [PubMed]
  7. M. Sköld, J. Yang, H. Sunnerud, M. Karlsson, S. Oda, and P. A. Andrekson, Opt. Express 16, 5974 (2008).
    [Crossref] [PubMed]
  8. G. Cappellini and S. Trillo, J. Opt. Soc. Am. B 8, 824 (1991).
    [Crossref]
  9. M. E. Marhic, N. Kagi, T.-K. Chiang, and L. G. Kazovsky, Opt. Lett. 21, 573 (1996).
    [Crossref] [PubMed]

2008 (1)

2007 (2)

2005 (1)

M. Matsumoto, IEEE Photon. Technol. Lett. 17, 1055 (2005).
[Crossref]

2000 (1)

K. Inoue, Electron. Lett. 36, 1016 (2000).
[Crossref]

1996 (1)

1991 (1)

1990 (1)

Andrekson, P. A.

Cappellini, G.

Chiang, T.-K.

Croussore, K.

K. Croussore and G. Li, Electron. Lett. 43, 177 (2007).
[Crossref]

Futami, F.

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
[PubMed]

Gordon, J. P.

Inoue, K.

K. Inoue, Electron. Lett. 36, 1016 (2000).
[Crossref]

Kagi, N.

Karlsson, M.

Kazovsky, L. G.

Li, G.

K. Croussore and G. Li, Electron. Lett. 43, 177 (2007).
[Crossref]

Ludwig, R.

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
[PubMed]

Marhic, M. E.

Matsumoto, M.

M. Matsumoto and K. Sanuki, Opt. Express 15, 8094 (2007).
[Crossref] [PubMed]

M. Matsumoto, IEEE Photon. Technol. Lett. 17, 1055 (2005).
[Crossref]

Mollenauer, L. F.

Oda, S.

Okabe, R.

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
[PubMed]

Ono, S.

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
[PubMed]

Sanuki, K.

Schmidt-Langhorst, C.

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
[PubMed]

Schubert, C.

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
[PubMed]

Sköld, M.

Sunnerud, H.

Trillo, S.

Watanabe, S.

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
[PubMed]

Yang, J.

Electron. Lett. (2)

K. Inoue, Electron. Lett. 36, 1016 (2000).
[Crossref]

K. Croussore and G. Li, Electron. Lett. 43, 177 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Matsumoto, IEEE Photon. Technol. Lett. 17, 1055 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Other (1)

F. Futami, R. Okabe, S. Ono, S. Watanabe, R. Ludwig, C. Schmidt-Langhorst, and C. Schubert, in Optical Fiber Communication Conference and Exposition and The National Fiber Optics Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThB3.
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Saturation behavior of a FOPA.

Fig. 2
Fig. 2

Amplitude SNR and standard deviation of phase noise of the output signal from the FOPA with P p = 200 mW (solid curves) and 400 mW (dashed curves). Vertical lines indicate optimum operation points of the limiter at each pump power.

Fig. 3
Fig. 3

Output phase noise induced by the input amplitude noise versus pump power.

Fig. 4
Fig. 4

Constellation diagrams of input and output signals. (a) Input signal with ρ s , in = 20 dB , (b) output signal at P p = 400 mW and A s 2 ( 0 ) = 7.5 dBm , (c) output signal at P p = 400 mW and A s 2 ( 0 ) = 1.5 dBm , (d) output signal at P p = 50 mW and A s 2 ( 0 ) = 17 dBm , (e) output signal at P p = 50 mW , and A s 2 ( 0 ) = 18.5 dBm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d A p d z = ( α 2 ) A p 2 γ A p A s A i sin θ ,
d A m d z = ( α 2 ) A m + γ A p 2 A n sin θ ,
d θ p d z = γ ( A p 2 + 2 A s 2 + 2 A i 2 + 2 A s A i cos θ ) ,
d θ m d z = γ [ A m 2 + 2 A p 2 + 2 A n 2 + ( A p 2 A n A m ) cos θ ] ,
Δ A s ( L ) = a s s Δ A s ( 0 ) + a s p Δ A p ( 0 ) ,
Δ θ s ( L ) = b s s Δ A s ( 0 ) + b s p Δ A p ( 0 ) .
ρ s , out = A s 0 2 ( L ) Δ A s 2 ( L ) = { [ a s s 2 A s 0 2 ( 0 ) A s 0 2 ( L ) ] ρ s , in 1 + [ a s p 2 A p 0 2 ( 0 ) A s 0 2 ( L ) ] ρ p , in 1 } 1 ,
σ phase 2 = Δ θ s 2 ( L ) = b s s 2 A s 0 2 ( 0 ) ρ s , in 1 + b s p 2 A p 0 2 ( 0 ) ρ p , in 1 ,

Metrics