Abstract

We present for the first time a Nd:YVO4 laser emitting at 1064nm intracavity pumped at 912nm by a Nd:GdVO4 laser. We carried out a model to design the system properly, and laser performance was experimentally investigated. Intracavity sum-frequency mixing at 912 and 1064nm was then realized in a BiBO crystal to reach the blue range. We obtained a cw output power of 155mW at 491nm with a pump laser diode emitting 20W at 808nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Marshall, Laser Focus World 40, 79 (2004).
  2. E. Herault, F. Balembois, and P. Georges, Opt. Express 13, 5653 (2005).
    [CrossRef] [PubMed]
  3. C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).
  4. R. C. Stoneman and L. Esterowitz, Opt. Lett. 17, 736 (1992).
    [CrossRef] [PubMed]
  5. C. Bollig, R. A. Hayward, W. A. Clarkson, and D. C. Hanna, Opt. Lett. 23, 1757 (1998).
    [CrossRef]
  6. M. Schellhorn, A. Hirth, and C. Kieleck, Opt. Lett. 28, 1933 (2003).
    [CrossRef] [PubMed]
  7. F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
    [CrossRef]
  8. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
    [CrossRef]
  9. H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
    [CrossRef]

2005 (1)

2004 (1)

L. Marshall, Laser Focus World 40, 79 (2004).

2003 (1)

2002 (1)

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

2000 (2)

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[CrossRef]

1998 (1)

1997 (1)

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
[CrossRef]

1992 (1)

Aka, G.

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

Augé, F.

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

Balembois, F.

E. Herault, F. Balembois, and P. Georges, Opt. Express 13, 5653 (2005).
[CrossRef] [PubMed]

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
[CrossRef]

Bohaty, L.

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[CrossRef]

Bollig, C.

Brun, A.

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
[CrossRef]

Clarkson, W. A.

Czeranowsky, C.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Druon, F.

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
[CrossRef]

Esterowitz, L.

Falcoz, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
[CrossRef]

Georges, P.

E. Herault, F. Balembois, and P. Georges, Opt. Express 13, 5653 (2005).
[CrossRef] [PubMed]

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
[CrossRef]

Hanna, D. C.

Hayward, R. A.

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[CrossRef]

Herault, E.

Heumann, E.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Hirth, A.

Huber, G.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Kerboull, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
[CrossRef]

Kieleck, C.

Kutovoi, S.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[CrossRef]

Marshall, L.

L. Marshall, Laser Focus World 40, 79 (2004).

Mougel, F.

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

Schellhorn, M.

Schmidt, M.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Stoneman, R. C.

Vivien, D.

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

Zavartsev, Y.

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

IEEE J. Quantum Electron. (2)

F. Augé, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, and D. Vivien, IEEE J. Quantum Electron. 36, 598 (2000).
[CrossRef]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, IEEE J. Quantum Electron. 33, 269 (1997).
[CrossRef]

J. Appl. Phys. (1)

H. Hellwig, J. Liebertz, and L. Bohaty, J. Appl. Phys. 88, 240 (2000).
[CrossRef]

Laser Focus World (1)

L. Marshall, Laser Focus World 40, 79 (2004).

Opt. Commun. (1)

C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, and Y. Zavartsev, Opt. Commun. 205, 361 (2002).

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of the cascade pumping.

Fig. 2
Fig. 2

Absorption in a Nd : Y V O 4 crystal at room temperature ( 5 mm long, 0.1% doping level) around 914 nm .

Fig. 3
Fig. 3

Principle of the intracavity pumping and sum-frequency mixing.

Fig. 4
Fig. 4

(a) Simulated intracavity powers at 912 and 1064 nm and (b) product of intracavity powers P 912 × P 1064 versus absorption in the Nd : Y V O 4 crystal.

Fig. 5
Fig. 5

Experimental setup. M1, M2, M3, and M5 are HR at 912 nm and define the cavity at 912 nm . M4 and M5 are HR at 1064 nm and define the cavity at 1064 nm . M1 is HT at 808 nm . M2 and M3 are also HT at 1064 nm . The distance M1–M3 is 240 mm . The distance M3–M5 is 395 mm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G 912 = 1 ( 1 L 912 ) e 2 σ a 912 N l ,
G 1064 = σ e 1064 N σ a 912 I 912 σ a 912 I 912 + 1 τ + σ e 1064 I 1064 ,
G 1064 = 1 ( 1 L 1064 ) .
P 912 = h ν π w 912 2 2 I 912 ,

Metrics