Abstract

Resonant dispersive waves generated by high-order dispersion in a Ti:sapphire mode-locked solitary laser are investigated and experiments are found to be in good agreement with theoretical analysis. Both theory and experiment show that the wavelength differences can be tuned in a large range via changing the cavity dispersion. This simple technique can be applied to the fields where tunable femtosecond pulses at multiple wavelengths are needed. The described mechanism may be applied in other systems where solitons are known to exist.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. X. de Barros and P. C. Becker, Opt. Lett. 18, 631 (1993).
    [CrossRef] [PubMed]
  2. Z. Zhang and T. Yagi, Opt. Lett. 18, 2126 (1993).
    [CrossRef] [PubMed]
  3. A. Leitenstorfer, C. Furst, and A. Laubereau, Opt. Lett. 20, 916 (1995).
    [CrossRef] [PubMed]
  4. M. Betz, F. Sotier, F. Tauser, S. Trumm, A. Laubereau, and A. Leitenstorfer, Opt. Lett. 29, 629 (2004).
    [CrossRef] [PubMed]
  5. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, Opt. Lett. 26, 268 (2001).
    [CrossRef]
  6. C. J. Zhu, J. F. He, and S. C. Wang, Opt. Lett. 30, 561 (2005).
    [CrossRef] [PubMed]
  7. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett. 98, 203901 (2007).
    [CrossRef] [PubMed]
  8. Y. Zheng, Z. Zeng, X. Li, X. Chen, P. Liu, H. Xiong, H. Lu, S. Zhao, P. Wei, L. Zhang, Z. Wang, J. Liu, Y. Cheng, R. Li, and Z. Xu, Opt. Lett. 33, 234 (2008).
    [CrossRef] [PubMed]
  9. O. Svelto, Principles of Lasers (Plenum, 1998).
  10. C. Lin, H. Kogelnik, and L. G. Cohen, Opt. Lett. 5, 476 (1980).
    [CrossRef] [PubMed]
  11. J. Zhou, G. Taft, C.-P. Huang, M. M. Murnane, H. C. Kapteyn, and I. P. Christov, Opt. Lett. 19, 1149 (1994).
    [PubMed]
  12. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
    [CrossRef] [PubMed]
  13. F. Biancalana, “Modeling of nonlinear effects in microstructured fibers,” Ph.D. dissertation (University of Bath, 2005).
  14. T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge U. Press, 2006).
  15. H. Qasmi, J. Barre, and T. Dauxois, “Links between nonlinear dynamics and statistical mechanics in a simple one-dimensional model,” cond-mat/0407662v1.
  16. J. Peng and A. V. Sokolov, J. Mod. Opt. 54, 2689 (2007).
    [CrossRef]

2008 (1)

2007 (2)

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett. 98, 203901 (2007).
[CrossRef] [PubMed]

J. Peng and A. V. Sokolov, J. Mod. Opt. 54, 2689 (2007).
[CrossRef]

2005 (1)

2004 (1)

2001 (1)

1995 (2)

1994 (1)

1993 (2)

1980 (1)

Akhmediev, N.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Barre, J.

H. Qasmi, J. Barre, and T. Dauxois, “Links between nonlinear dynamics and statistical mechanics in a simple one-dimensional model,” cond-mat/0407662v1.

Becker, P. C.

Betz, M.

Biancalana, F.

F. Biancalana, “Modeling of nonlinear effects in microstructured fibers,” Ph.D. dissertation (University of Bath, 2005).

Chen, X.

Cheng, Y.

Christov, I. P.

Cohen, L. G.

Dauxois, T.

T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge U. Press, 2006).

H. Qasmi, J. Barre, and T. Dauxois, “Links between nonlinear dynamics and statistical mechanics in a simple one-dimensional model,” cond-mat/0407662v1.

de Barros, M. R. X.

Fejer, M. M.

Furst, C.

Galvanauskas, A.

Harter, D.

He, J. F.

Huang, C.-P.

Imeshev, G.

Kapteyn, H. C.

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Kogelnik, H.

Laubereau, A.

Leitenstorfer, A.

Li, R.

Li, X.

Lin, C.

Liu, J.

Liu, P.

Lu, H.

Murnane, M. M.

Peng, J.

J. Peng and A. V. Sokolov, J. Mod. Opt. 54, 2689 (2007).
[CrossRef]

Peyrard, M.

T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge U. Press, 2006).

Qasmi, H.

H. Qasmi, J. Barre, and T. Dauxois, “Links between nonlinear dynamics and statistical mechanics in a simple one-dimensional model,” cond-mat/0407662v1.

Sokolov, A. V.

J. Peng and A. V. Sokolov, J. Mod. Opt. 54, 2689 (2007).
[CrossRef]

Song, X.

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett. 98, 203901 (2007).
[CrossRef] [PubMed]

Sotier, F.

Svelto, O.

O. Svelto, Principles of Lasers (Plenum, 1998).

Taft, G.

Tauser, F.

Trumm, S.

Wang, S. C.

Wang, Z.

Wei, P.

Xiong, H.

Xu, Z.

Yagi, T.

Zeng, Z.

Zhang, L.

Zhang, Z.

Zhao, S.

Zheng, Y.

Zhou, J.

Zhu, C. J.

J. Mod. Opt. (1)

J. Peng and A. V. Sokolov, J. Mod. Opt. 54, 2689 (2007).
[CrossRef]

Opt. Lett. (9)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, Phys. Rev. Lett. 98, 203901 (2007).
[CrossRef] [PubMed]

Other (4)

F. Biancalana, “Modeling of nonlinear effects in microstructured fibers,” Ph.D. dissertation (University of Bath, 2005).

T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge U. Press, 2006).

H. Qasmi, J. Barre, and T. Dauxois, “Links between nonlinear dynamics and statistical mechanics in a simple one-dimensional model,” cond-mat/0407662v1.

O. Svelto, Principles of Lasers (Plenum, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Measured spectrum (solid curve) of the main soliton with two dispersive waves sitting on both sides. Calculated GDD (dashed curve) is also shown. (b) Tuning of the frequency difference between the main soliton and the dispersive wave soliton via changing the amount of fused silica inserted into the laser mode.

Fig. 2
Fig. 2

Measured spectrum of the main soliton (dashed curve), (a) dispersive wave (dashed–dotted curve) and total spectrum (solid curve); (b) autocorrelation curve of the main soliton with pulse duration 49.7 fs ; (c) autocorrelation curve of the dispersive wave soliton with pulse duration of 124 fs ; (d) autocorrelation of both solitons (solid curve) and a fitted line (dashed curve) with 49.7 and 125 fs pulses and a 118 fs delay between them.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z υ ( z , t ) = i 1 2 β ( z ) 2 t 2 υ ( z , t ) + i κ ( z ) υ ( z , t ) 2 υ ( z , t ) ,
D = i m = 3 β m m ! ( i t ) m ,
z ( υ s ( z , t ) + υ d ( z , t ) ) = i 1 2 β ( z ) 2 t 2 ( υ s ( z , t ) + υ d ( z , t ) ) + i κ ( z ) ( υ s ( z , t ) + υ d ( z , t ) ) 2 ( υ s ( z , t ) + υ d ( z , t ) ) + i m = 3 β m m ! ( i t ) m ( υ s ( z , t ) + υ d ( z , t ) ) .
z υ d = i 1 2 β 2 t 2 υ d + i κ ( 2 υ s 2 υ d + υ s 2 υ d * ) + i m = 3 β m m ! ( i t ) m υ d .
z υ d = i 1 2 β 2 t 2 υ d + 3 i κ υ s 2 υ d + i m = 3 β m m ! ( i t ) m υ d .
z υ d = i 1 2 β 2 t 2 υ d + 3 i κ υ s 2 υ d ,

Metrics