Abstract

We present the design of realistic annular photonic-crystal (APC) structures of finite thickness aiming to obtain a complete photonic bandgap (PBG). The APC is composed of dielectric rods and circular air holes in a triangular lattice such that each rod is centered within each hole. The optical and geometrical values of the structure are studied, and the interplay between various design parameters is highlighted. The coupled role of the inner-dielectric-rod radius, material types, and slab thickness is investigated. It is shown that the slab thickness is vital to obtain a complete photonic bandgap below the light line, and the specific value of the inner-dielectric-rod radius to sustain the maximum PBG if the hole radius is fixed at proper value is found.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).
  4. B. S. Song, S. Noda, and T. Asano, Science 300, 1537 (2003).
    [CrossRef] [PubMed]
  5. A. Adibi, X. Yong, R. K. Lee, A. Yariv, and A. Scherer, J. Lightwave Technol. 18, 1554 (2000).
    [CrossRef]
  6. M. Kafesaki, M. Agio, and C. M. Soukoulis, J. Opt. Soc. Am. B 19, 2232 (2002).
    [CrossRef]
  7. H. Kurt and D. S. Citrin, Opt. Express 13, 10316 (2005).
    [CrossRef] [PubMed]
  8. A. Saynatjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, Opt. Express 15, 8323 (2007).
    [CrossRef] [PubMed]
  9. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005).
    [CrossRef]
  10. L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (2006).
    [CrossRef]
  11. S. Johnson and J. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef] [PubMed]
  12. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  13. M. Qiu, Phys. Rev. B 66, 033103 (2002).
    [CrossRef]
  14. T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
    [CrossRef]

2007 (1)

2006 (1)

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (2006).
[CrossRef]

2005 (2)

H. Kurt and D. S. Citrin, Opt. Express 13, 10316 (2005).
[CrossRef] [PubMed]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

2003 (1)

B. S. Song, S. Noda, and T. Asano, Science 300, 1537 (2003).
[CrossRef] [PubMed]

2002 (3)

M. Qiu, Phys. Rev. B 66, 033103 (2002).
[CrossRef]

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

M. Kafesaki, M. Agio, and C. M. Soukoulis, J. Opt. Soc. Am. B 19, 2232 (2002).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

1987 (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Adibi, A.

Agio, M.

Ahopelto, J.

Andreani, L. C.

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (2006).
[CrossRef]

Asano, T.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, Science 300, 1537 (2003).
[CrossRef] [PubMed]

Baba, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Citrin, D. S.

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Fukaya, N.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Gerace, D.

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (2006).
[CrossRef]

Iwai, T.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Joannopoulos, J.

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Johnson, S.

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Kafesaki, M.

Kitagawa, H.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

Kurt, H.

Lee, R. K.

Lipsanen, H.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).

Motegi, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Mulot, M.

Noda, S.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, Science 300, 1537 (2003).
[CrossRef] [PubMed]

Qiu, M.

M. Qiu, Phys. Rev. B 66, 033103 (2002).
[CrossRef]

Sakai, A.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Saynatjoki, A.

Scherer, A.

Song, B. S.

B. S. Song, S. Noda, and T. Asano, Science 300, 1537 (2003).
[CrossRef] [PubMed]

Soukoulis, C. M.

Takayama, S.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

Tanaka, Y.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Watanabe, Y.

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yariv, A.

Yong, X.

Appl. Phys. Lett. (1)

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, Appl. Phys. Lett. 87, 061107 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, and A. Sakai, IEEE J. Quantum Electron. 38, 743 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Phys. Rev. B (3)

L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 (2006).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

M. Qiu, Phys. Rev. B 66, 033103 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Science (1)

B. S. Song, S. Noda, and T. Asano, Science 300, 1537 (2003).
[CrossRef] [PubMed]

Other (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Annular photonic-crystal slab with thickness h and lattice constant a. The air-hole diameter is represented by d 2 and pillars composed of either Ge, a-Si, or Zr 3 N 4 , have diameter d 1 . The background material is either Ge or a-Si on top of the SiO 2 substrate.

Fig. 2
Fig. 2

For a given material selection, the gap–midgap ratio is plotted versus the slab thickness h and the rod radius r 1 . The radius of the hole r 2 is taken to be 0.46 a . The refractive indices of the dielectric materials are given in the text.

Fig. 3
Fig. 3

Photonic band diagram of 2D annular PC slabs. The thickness of the slab is h = 0.8 a , r 1 = 0.19 a , and r 2 = 0.46 a for the material selection of Ge Zr 3 N 4 .

Metrics