Abstract

We investigated the use of a deep-etched fused-silica grating with triangular-shaped grooves as a highly efficient polarizing beam splitter (PBS). A triangular-groove PBS grating is designed at a wavelength of 1550nm to be used in optical communication. When it is illuminated in Littrow mounting, the transmitted TE- and TM-polarized waves are mainly diffracted in the minus-first and zeroth orders, respectively. The design condition is based on the average differences of the grating mode indices, which is verified by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient over the C+L band range for both TE and TM polarizations (>97.68%). It is shown that such a triangular-groove PBS grating can exhibit a higher diffraction efficiency, a larger extinction ratio, and less reflection loss than the binary-phase fused-silica PBS grating.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Li and J. A. Dobrowolski, Appl. Opt. 39, 2753 (2000).
  2. C. R. A. Lima, L. L. Soares, L. Cescato, and A. L. Gobbi, Opt. Lett. 22, 203 (1997).
    [CrossRef] [PubMed]
  3. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, J. Opt. A 1, 215 (1999).
    [CrossRef]
  4. B. Wang, C. Zhou, S. Wang, and J. Feng, Opt. Lett. 32, 1299 (2007).
    [CrossRef] [PubMed]
  5. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, Appl. Opt. 46, 819 (2007).
    [CrossRef] [PubMed]
  6. M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
    [CrossRef]
  7. M. G. Moharam, D. A. Pommet, and E. B. Grann, J. Opt. Soc. Am. A 12, 1077 (1995).
    [CrossRef]
  8. L. C. Botten, M. S. Craig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, Opt. Acta 28, 413 (1981).
    [CrossRef]
  9. J. Zheng, C. Zhou, B. Wang, and J. Feng, J. Opt. Soc. Am. A 25, 1075 (2008).
    [CrossRef]
  10. R. C. Enger and S. K. Case, Appl. Opt. 22, 3220 (1983).
    [CrossRef] [PubMed]
  11. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, Appl. Opt. 26, 1142 (1987).
    [CrossRef] [PubMed]
  12. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, Opt. Lett. 22, 142 (1997).
    [CrossRef] [PubMed]
  13. D. S. Hobbs, B. D. Macleod, and J. R. Riccobono, Proc. SPIE 6545, 65450Y (2007).
    [CrossRef]
  14. W. Wang, C. Zhou, and W. Jia, Appl. Opt. 47, 1427 (2008).
    [CrossRef] [PubMed]

2008 (2)

2007 (3)

2000 (1)

L. Li and J. A. Dobrowolski, Appl. Opt. 39, 2753 (2000).

1999 (1)

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, J. Opt. A 1, 215 (1999).
[CrossRef]

1997 (2)

1995 (1)

1987 (1)

1983 (1)

1982 (1)

1981 (1)

L. C. Botten, M. S. Craig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, Opt. Acta 28, 413 (1981).
[CrossRef]

Adams, J. L.

L. C. Botten, M. S. Craig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, Opt. Acta 28, 413 (1981).
[CrossRef]

Andrewartha, J. R.

L. C. Botten, M. S. Craig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, Opt. Acta 28, 413 (1981).
[CrossRef]

Botten, L. C.

L. C. Botten, M. S. Craig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, Opt. Acta 28, 413 (1981).
[CrossRef]

Boyd, R. D.

Britten, J. A.

Bryan, S. J.

Cambril, E.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, J. Opt. A 1, 215 (1999).
[CrossRef]

Case, S. K.

Cescato, L.

Chavel, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, J. Opt. A 1, 215 (1999).
[CrossRef]

Clausnitzer, T.

Craig, M. S.

L. C. Botten, M. S. Craig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, Opt. Acta 28, 413 (1981).
[CrossRef]

Dobrowolski, J. A.

L. Li and J. A. Dobrowolski, Appl. Opt. 39, 2753 (2000).

Enger, R. C.

Feng, J.

Gaylord, T. K.

Gobbi, A. L.

Grann, E. B.

Hazart, J.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, J. Opt. A 1, 215 (1999).
[CrossRef]

Hobbs, D. S.

D. S. Hobbs, B. D. Macleod, and J. R. Riccobono, Proc. SPIE 6545, 65450Y (2007).
[CrossRef]

Jia, W.

Kämpfe, T.

Kimura, Y.

Kley, E.-B.

Lalanne, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, J. Opt. A 1, 215 (1999).
[CrossRef]

Launois, H.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, J. Opt. A 1, 215 (1999).
[CrossRef]

Li, L.

L. Li and J. A. Dobrowolski, Appl. Opt. 39, 2753 (2000).

Lima, C. R. A.

Macleod, B. D.

D. S. Hobbs, B. D. Macleod, and J. R. Riccobono, Proc. SPIE 6545, 65450Y (2007).
[CrossRef]

Mcphedran, R. C.

L. C. Botten, M. S. Craig, R. C. Mcphedran, J. L. Adams, and J. R. Andrewartha, Opt. Acta 28, 413 (1981).
[CrossRef]

Moharam, M. G.

Nguyen, H. T.

Nishida, N.

Ohta, Y.

Ono, Y.

Parriaux, O.

Perry, M. D.

Pommet, D. A.

Riccobono, J. R.

D. S. Hobbs, B. D. Macleod, and J. R. Riccobono, Proc. SPIE 6545, 65450Y (2007).
[CrossRef]

Shore, B. W.

Soares, L. L.

Tishchenko, A.

Tünnermann, A.

Wang, B.

Wang, S.

Wang, W.

Zheng, J.

Zhou, C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a transmission PBS grating with triangular-shaped grooves.

Fig. 2
Fig. 2

Mode effective indices: (a) average difference of mode indices as a function of the grating period; (b) mode indices as a function of duty cycle f for different layers of a triangular-groove grating with period d = 900 nm .

Fig. 3
Fig. 3

Diffraction efficiency as a function of grating depth h. The grating period d is 900 nm .

Fig. 4
Fig. 4

Diffraction efficiency of the designed PBS grating as a function of the incident wavelength in Littrow mounting. The period d is 900 nm , and the grating depth h is 2966 nm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η 1 = sin 2 ( k 0 h Δ n ¯ eff 2 ) ,
Δ n ¯ eff = i ( n i , even n i , odd ) h i h ,
h = λ 2 Δ n ¯ eff TE ,
Δ n ¯ eff TM = 0 .

Metrics