Abstract

Mean-square coherent light is defined as light that is able to interfere with fringes of unit visibility when its electromagnetic field is multiplied by appropriate nonsingular deterministic Jones matrices. It includes light that satisfies the factorization condition at order one and partially polarized light that leads to interference fringes of unit visibility. A necessary and sufficient experimentally measurable condition to determine if two electromagnetic fields are mean-square coherent is established. Furthermore, different properties of partially polarized mean-square coherent light are discussed, such as its relation to the factorization condition and its evolution with propagation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  2. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
    [CrossRef] [PubMed]
  3. M. Mujat, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 21, 2414 (2004).
    [CrossRef]
  4. Ph. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005).
    [CrossRef] [PubMed]
  5. F. Gori, M. Santarsiero, and R. Borghi, Opt. Lett. 32, 588 (2007).
    [CrossRef] [PubMed]
  6. A. Luis, J. Opt. Soc. Am. A 24, 1063 (2007).
    [CrossRef]
  7. R. Martinez-Herrero and P. M. Mejias, Opt. Lett. 32, 1471 (2007).
    [CrossRef] [PubMed]
  8. R. J. Glauber, Phys. Rev. 130, 2529 (1963).
    [CrossRef]
  9. L. Mandel and E. Wolf, in Optical Coherence and Quantum Optics (Cambridge U. Press, 1995), pp. 147-228.
  10. S. A. Ponomarenko and E. Wolf, Opt. Commun. 227, 73 (2003).
    [CrossRef]
  11. O. Korotkova and E. Wolf, Opt. Lett. 30, 198 (2005).
    [CrossRef] [PubMed]
  12. J. W. Goodman, in Statistical Optics (Wiley, 1985), pp. 116-156.
  13. Ph. Réfrégier and A. Roueff, Opt. Lett. 31, 2827 (2006).
    [CrossRef] [PubMed]
  14. E. Wolf, in Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007), pp. 174-197.
  15. R. Martinez-Herrero and P. M. Mejias, Opt. Lett. 33, 195 (2008).
    [CrossRef] [PubMed]
  16. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
    [CrossRef] [PubMed]

2008 (1)

2007 (3)

2006 (1)

2005 (2)

2004 (2)

2003 (3)

S. A. Ponomarenko and E. Wolf, Opt. Commun. 227, 73 (2003).
[CrossRef]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
[CrossRef] [PubMed]

1963 (1)

R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[CrossRef]

Borghi, R.

Dogariu, A.

Friberg, A. T.

Glauber, R. J.

R. J. Glauber, Phys. Rev. 130, 2529 (1963).
[CrossRef]

Goodman, J. W.

J. W. Goodman, in Statistical Optics (Wiley, 1985), pp. 116-156.

Gori, F.

Goudail, F.

Korotkova, O.

Luis, A.

Mandel, L.

L. Mandel and E. Wolf, in Optical Coherence and Quantum Optics (Cambridge U. Press, 1995), pp. 147-228.

Martinez-Herrero, R.

Mejias, P. M.

Mujat, M.

Ponomarenko, S. A.

S. A. Ponomarenko and E. Wolf, Opt. Commun. 227, 73 (2003).
[CrossRef]

Réfrégier, Ph.

Roueff, A.

Santarsiero, M.

Setälä, T.

Tervo, J.

Wolf, E.

O. Korotkova and E. Wolf, Opt. Lett. 30, 198 (2005).
[CrossRef] [PubMed]

M. Mujat, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 21, 2414 (2004).
[CrossRef]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

S. A. Ponomarenko and E. Wolf, Opt. Commun. 227, 73 (2003).
[CrossRef]

E. Wolf, in Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007), pp. 174-197.

L. Mandel and E. Wolf, in Optical Coherence and Quantum Optics (Cambridge U. Press, 1995), pp. 147-228.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

W ( r 1 , r 2 ) = E ( r 2 ) E ( r 1 ) ,
W ( r 1 , r 2 ) = Ψ ( r 2 ) Ψ ( r 1 ) ,
η ( r 1 , r 2 ) = t r [ W ( r 1 , r 2 ) ] t r [ S ( r 1 ) ] t r [ S ( r 2 ) ] .
E ( r ) = ϵ 1 Ψ 1 ( r ) + ϵ 2 Ψ 2 ( r ) ,
J ̃ ( r ) = ( ψ 1 , x ( r ) ψ 2 , x ( r ) ψ 1 , y ( r ) ψ 2 , y ( r ) )
E ( r 2 ) E ( r 1 ) = λ 1 Ψ 1 ( r 2 ) Ψ 1 ( r 1 ) + λ 2 Ψ 2 ( r 2 ) Ψ 2 ( r 1 ) ,
E ( ρ , z ) = z = 0 E ( ρ , 0 ) G ( ρ ρ , z ) d ρ .

Metrics