Abstract

A new method for accurate measurement of the threshold value of stimulated Brillouin scattering (SBS) in water in terms of pump laser intensity is investigated. The threshold value of SBS is determined by the point of the deviation of the value of the attenuation coefficients of wide- and narrow-linewidth lasers rather than the intensity of the backscattered SBS signal in the material.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, I. R. Konig, H.-J. Pätzold, and J. Schwartz, Appl. Phys. B 61, 73 (1995).
    [CrossRef]
  2. G. Cook and K. D. Ridley, Opt. Commun. 130, 192 (1996).
    [CrossRef]
  3. K. Yungsheng, C. Kyunam, and J. K. Mclver, Opt. Commun. 80, 233 (1991).
    [CrossRef]
  4. P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
    [CrossRef]
  5. N. M. Kroll, J. Appl. Phys. 36, 34 (1965).
    [CrossRef]
  6. D. T. Hon, Opt. Lett. 5, 516 (1980).
    [CrossRef] [PubMed]
  7. M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering Fundamentals and Applications (IOP Publishing, 2003), pp. 1-42.
  8. S. A. Sullivan, J. Opt. Soc. Am. 53, 962 (1963).
    [CrossRef]
  9. J. Xu, X. Ren, W. Gong, R. Dai, and D. Liu, Appl. Opt. 42, 6704 (2003).
    [CrossRef] [PubMed]
  10. J. Bai, J. Liu, Y. Huang, Y. Liu, L. Sun, D. Liu, and E. S. Fry, Appl. Opt. 46, 6804 (2007).
    [CrossRef] [PubMed]
  11. P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
    [CrossRef]
  12. N. Naftali, R. M. J. Bemair, P. Idit, and Y. Ammon, Appl. Opt. 41, 3576 (2002).
    [CrossRef] [PubMed]
  13. G. Rivoire and D. Wang, J. Chem. Phys. 99, 9460 (1993).
    [CrossRef]
  14. H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
    [CrossRef]
  15. A. D. Kudryavtseva and N. V. Tcherniega, J. Russ. Laser Res. 23, 288 (2002).
    [CrossRef]

2007 (1)

2004 (1)

H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
[CrossRef]

2003 (1)

2002 (2)

N. Naftali, R. M. J. Bemair, P. Idit, and Y. Ammon, Appl. Opt. 41, 3576 (2002).
[CrossRef] [PubMed]

A. D. Kudryavtseva and N. V. Tcherniega, J. Russ. Laser Res. 23, 288 (2002).
[CrossRef]

1996 (1)

G. Cook and K. D. Ridley, Opt. Commun. 130, 192 (1996).
[CrossRef]

1995 (1)

H. J. Eichler, I. R. Konig, H.-J. Pätzold, and J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

1993 (1)

G. Rivoire and D. Wang, J. Chem. Phys. 99, 9460 (1993).
[CrossRef]

1991 (1)

K. Yungsheng, C. Kyunam, and J. K. Mclver, Opt. Commun. 80, 233 (1991).
[CrossRef]

1986 (2)

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

1980 (1)

1965 (1)

N. M. Kroll, J. Appl. Phys. 36, 34 (1965).
[CrossRef]

1963 (1)

Ammon, Y.

Babin, V.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering Fundamentals and Applications (IOP Publishing, 2003), pp. 1-42.

Bai, J.

Bemair, R. M. J.

Boyd, W.

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

Cook, G.

G. Cook and K. D. Ridley, Opt. Commun. 130, 192 (1996).
[CrossRef]

Dai, R.

Damzen, M. J.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering Fundamentals and Applications (IOP Publishing, 2003), pp. 1-42.

Eichler, H. J.

H. J. Eichler, I. R. Konig, H.-J. Pätzold, and J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

Fry, E. S.

Ge, C.-W.

H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
[CrossRef]

Gong, W.

Hon, D. T.

Huang, Y.

Idit, P.

Konig, I. R.

H. J. Eichler, I. R. Konig, H.-J. Pätzold, and J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

Kroll, N. M.

N. M. Kroll, J. Appl. Phys. 36, 34 (1965).
[CrossRef]

Kudryavtseva, A. D.

A. D. Kudryavtseva and N. V. Tcherniega, J. Russ. Laser Res. 23, 288 (2002).
[CrossRef]

Kyunam, C.

K. Yungsheng, C. Kyunam, and J. K. Mclver, Opt. Commun. 80, 233 (1991).
[CrossRef]

Liu, D.

Liu, J.

Liu, Y.

Mclver, J. K.

K. Yungsheng, C. Kyunam, and J. K. Mclver, Opt. Commun. 80, 233 (1991).
[CrossRef]

Mocofanescu, A.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering Fundamentals and Applications (IOP Publishing, 2003), pp. 1-42.

Naftali, N.

Narum, P.

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

Pätzold, H.-J.

H. J. Eichler, I. R. Konig, H.-J. Pätzold, and J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

Qin, Y.-Q.

H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
[CrossRef]

Ren, X.

Ridley, K. D.

G. Cook and K. D. Ridley, Opt. Commun. 130, 192 (1996).
[CrossRef]

Rivoire, G.

G. Rivoire and D. Wang, J. Chem. Phys. 99, 9460 (1993).
[CrossRef]

Schwartz, J.

H. J. Eichler, I. R. Konig, H.-J. Pätzold, and J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

Skeldom, M. D.

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

Su, H.

H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
[CrossRef]

Sullivan, S. A.

Sun, L.

Tang, S.-H.

H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
[CrossRef]

Tcherniega, N. V.

A. D. Kudryavtseva and N. V. Tcherniega, J. Russ. Laser Res. 23, 288 (2002).
[CrossRef]

Vlad, V. I.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering Fundamentals and Applications (IOP Publishing, 2003), pp. 1-42.

Wang, D.

G. Rivoire and D. Wang, J. Chem. Phys. 99, 9460 (1993).
[CrossRef]

Wang, S.-X.

H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
[CrossRef]

Xu, J.

Yungsheng, K.

K. Yungsheng, C. Kyunam, and J. K. Mclver, Opt. Commun. 80, 233 (1991).
[CrossRef]

Zhang, W.-J.

H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

H. J. Eichler, I. R. Konig, H.-J. Pätzold, and J. Schwartz, Appl. Phys. B 61, 73 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

P. Narum, M. D. Skeldom, and W. Boyd, IEEE J. Quantum Electron. 22, 2161 (1986).
[CrossRef]

J. Appl. Phys. (1)

N. M. Kroll, J. Appl. Phys. 36, 34 (1965).
[CrossRef]

J. Chem. Phys. (1)

G. Rivoire and D. Wang, J. Chem. Phys. 99, 9460 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Russ. Laser Res. (1)

A. D. Kudryavtseva and N. V. Tcherniega, J. Russ. Laser Res. 23, 288 (2002).
[CrossRef]

Opt. Commun. (3)

H. Su, S.-H. Tang, Y.-Q. Qin, C.-W. Ge, W.-J. Zhang, and S.-X. Wang, Opt. Commun. 242, 649 (2004).
[CrossRef]

G. Cook and K. D. Ridley, Opt. Commun. 130, 192 (1996).
[CrossRef]

K. Yungsheng, C. Kyunam, and J. K. Mclver, Opt. Commun. 80, 233 (1991).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering Fundamentals and Applications (IOP Publishing, 2003), pp. 1-42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout for measuring the attenuation coefficient of pulsed laser in water. 1, rear mirror; 2, Pockels cell; 3, 1 4 -wave plate; 4, dielectric polarizer; 5, oscillator rod; 6, output coupler; 7, IR mirror; 8, amplifier rod; 9, second-harmonic generator; 10, polarizer; 11, beam splitter; 12, water cell; D1, detector 1; D2, detector 2.

Fig. 2
Fig. 2

Measured scattered spectra of the narrow-bandwidth laser beam in water. The wavelength of the laser is 532 nm . The two spectra are measured at a same position in water. (a) Spectrum of SBS when the pulse energy of the laser beam is lower than the threshold value. (b) Spectrum of SBS when the pulse energy of the laser beam is higher than the threshold value.

Fig. 3
Fig. 3

Experimental measurements of the attenuation coefficient of water in a 1.6 water cell. The value per division is 24.87 MW cm 2 , which corresponds to an output pulse energy of 100 mJ ; circles, measured results with the narrow-bandwidth laser beam; crosses, measured results with the wide-bandwidth laser beam.

Fig. 4
Fig. 4

Fitted curves of the measured attenuation coefficient taken in water cells of (a) 1.2 m , (b) 1.6 m , and (c) and 2.0 m . The vertical dashed lines represent deviation points that correspond to the threshold value of SBS in water. The value per division of the horizontal axis is 24.87 MW cm 2 , which corresponds to an output pulse energy of 100 mJ .

Fig. 5
Fig. 5

Fitted curves of the measured attenuation coefficient taken in water cells of 0.4 and 0.8 m . The vertical dashed lines represent deviation points that correspond to the threshold value of SBS in water. The value per division of the horizontal axis is 24.87 MW cm 2 , which corresponds to an output pulse energy of 100 mJ .

Metrics