Abstract

We show the modulation of coherence for vectorial electromagnetic waves taking place in the interference plane of a Young interferometer. The amplitude of modulation is determined by the polarization properties at the slits.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Karczewski, Phys. Lett. 5, 191 (1963).
    [CrossRef]
  2. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  3. H. M. Ozaktas, S. Yüksel, and M. A. Kutay, J. Opt. Soc. Am. A 19, 1563 (2002).
    [CrossRef]
  4. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
    [CrossRef] [PubMed]
  5. P. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005).
    [CrossRef] [PubMed]
  6. A. Luis, J. Opt. Soc. Am. A 24, 1063 (2007).
    [CrossRef]
  7. J. J. Gil, Eur. Phys. J.: Appl. Phys. 40, 1 (2007).
    [CrossRef]
  8. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 31, 2208 (2006).
    [CrossRef] [PubMed]
  9. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 31, 2669 (2006).
    [CrossRef] [PubMed]
  10. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, Opt. Lett. 31, 688 (2006).
    [CrossRef] [PubMed]
  11. Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  12. J. Ellis and A. Dogariu, Opt. Lett. 29, 536 (2004).
    [CrossRef] [PubMed]
  13. E. C. G. Sudarshan, Phys. Rev. A 23, 2802 (1981).
    [CrossRef]
  14. A. Luis, Opt. Commun. 246, 437 (2005).
    [CrossRef]
  15. A. Luis, Opt. Commun. 251, 243 (2005).
    [CrossRef]
  16. A. Luis, Opt. Commun. 263, 141 (2006).
    [CrossRef]
  17. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  18. A. Luis, J. Opt. Soc. Am. A 23, 2855 (2006).
    [CrossRef]
  19. A. Luis, Phys. Rev. A 76, 043827 (2007).
    [CrossRef]
  20. G. S. Agarwal, A. Dogariu, T. D. Visser, and E. Wolf, Opt. Lett. 30, 120 (2005).
    [CrossRef] [PubMed]

2007 (3)

J. J. Gil, Eur. Phys. J.: Appl. Phys. 40, 1 (2007).
[CrossRef]

A. Luis, Phys. Rev. A 76, 043827 (2007).
[CrossRef]

A. Luis, J. Opt. Soc. Am. A 24, 1063 (2007).
[CrossRef]

2006 (5)

2005 (4)

2004 (1)

2003 (2)

2002 (1)

1981 (1)

E. C. G. Sudarshan, Phys. Rev. A 23, 2802 (1981).
[CrossRef]

1963 (1)

B. Karczewski, Phys. Lett. 5, 191 (1963).
[CrossRef]

Agarwal, G. S.

Borghi, R.

Brosseau, Ch.

Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

Dogariu, A.

Ellis, J.

Friberg, A. T.

Gil, J. J.

J. J. Gil, Eur. Phys. J.: Appl. Phys. 40, 1 (2007).
[CrossRef]

Gori, F.

Goudail, F.

Karczewski, B.

B. Karczewski, Phys. Lett. 5, 191 (1963).
[CrossRef]

Kutay, M. A.

Luis, A.

A. Luis, Phys. Rev. A 76, 043827 (2007).
[CrossRef]

A. Luis, J. Opt. Soc. Am. A 24, 1063 (2007).
[CrossRef]

A. Luis, Opt. Commun. 263, 141 (2006).
[CrossRef]

A. Luis, J. Opt. Soc. Am. A 23, 2855 (2006).
[CrossRef]

A. Luis, Opt. Commun. 246, 437 (2005).
[CrossRef]

A. Luis, Opt. Commun. 251, 243 (2005).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Ozaktas, H. M.

Réfrégier, P.

Santarsiero, M.

Setälä, T.

Sudarshan, E. C. G.

E. C. G. Sudarshan, Phys. Rev. A 23, 2802 (1981).
[CrossRef]

Tervo, J.

Visser, T. D.

Wolf, E.

Yüksel, S.

Eur. Phys. J.: Appl. Phys. (1)

J. J. Gil, Eur. Phys. J.: Appl. Phys. 40, 1 (2007).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (3)

A. Luis, Opt. Commun. 246, 437 (2005).
[CrossRef]

A. Luis, Opt. Commun. 251, 243 (2005).
[CrossRef]

A. Luis, Opt. Commun. 263, 141 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Lett. (1)

B. Karczewski, Phys. Lett. 5, 191 (1963).
[CrossRef]

Phys. Lett. A (1)

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Phys. Rev. A (2)

E. C. G. Sudarshan, Phys. Rev. A 23, 2802 (1981).
[CrossRef]

A. Luis, Phys. Rev. A 76, 043827 (2007).
[CrossRef]

Other (2)

Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Illustration of the Young interferometer YI1 showing the three rays contributing to the coherence between points x = ± b . The second Young interferometer YI2 is devised to observe the coherence properties of the field at points x = ± b .

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

W l , m ( x j , x k ) = E l ( x j ) E m * ( x k ) ,
s j ( x ) = tr [ σ j W ( x , x ) ] , W ( x , x ) = 1 2 j = 0 3 s j ( x ) σ j ,
S ̃ j ( x 1 , x 2 ) = tr [ σ j W ( x 1 , x 2 ) ] ,
W ( x 1 , x 2 ) = 1 2 j = 0 3 S ̃ j ( x 1 , x 2 ) σ j ,
S j ( x , p ) = tr [ σ j H ( x , p ) ] , H ( x , p ) = 1 2 j = 0 3 S j ( x , p ) σ j ,
H l , m ( x , p ) = k 2 π d x H l , m ( x x 2 , x + x 2 ) exp ( i k x p ) ,
s j ( x ) = d p S j ( x , p ) = S ̃ j ( x , x ) ,
S j ( x , p ) = k 2 π d x S ̃ j ( x x 2 , x + x 2 ) exp ( i k x p ) ,
S ̃ j ( x 1 , x 2 ) = d p S j ( x 1 2 + x 2 2 , p ) exp [ i k ( x 1 x 2 ) p ] .
S j ( 0 ) ( ± a , p ) s j ( 0 ) ( ± a ) ,
S j ( 0 ) ( 0 , p ) S ̃ j ( 0 ) ( a , a ) exp ( i 2 k p a ) + S ̃ j ( 0 ) ( a , a ) exp ( i 2 k p a ) .
S ̃ j ( z ) ( b , b ) S j ( z ) ( 0 , p + ) exp ( i 2 k b p + ) + S j ( z ) ( 0 , p ) exp ( i 2 k b p ) + S j ( z ) ( 0 , p 0 ) exp ( i 2 k b p 0 ) ,
S ̃ j ( z ) ( b , b ) S j ( 0 ) ( a , p + ) exp ( i 2 k b p + ) + S j ( 0 ) ( a , p ) exp ( i 2 k b p ) + S j ( 0 ) ( 0 , p 0 ) exp ( i 2 k b p 0 ) .
S ̃ j ( z ) ( b , b ) s j ( 0 ) ( a ) exp ( i 2 k b a z ) + s j ( 0 ) ( a ) exp ( i 2 k b a z ) + S ̃ j ( 0 ) ( a , a ) + S ̃ j ( 0 ) ( a , a ) .
S ̃ j ( z ) ( b , b ) s j ( 0 ) ( a ) cos ( 2 k b a z ) + S ̃ j ( 0 ) ( a , a ) ,
W ( z ) ( b , b ) W ( 0 ) ( a , a ) cos ( 2 k b a z ) + W ( 0 ) ( a , a ) .
Υ = W ( z ) ( ± b , b ) W ( 0 ) ( a , a ) cos ( 2 k b a z ) ,
W = W ( z ) ( ± b , ± b ) W ( 0 ) ( a , a ) ,
μ 2 = cos ( 2 k b a z ) 1 + P 2 2 , P 2 = 2 tr ( W 2 ) ( tr W ) 2 1 .
μ 3 2 = 4 3 [ tr ( M 2 ) ( tr M ) 2 1 4 ] , M = ( W Υ Υ W ) ,
μ 3 2 = 1 3 { [ 1 + cos 2 ( 2 k b a z ) ] ( 1 + P 2 ) 1 } .

Metrics