Abstract

We have designed a common-mode interferometric acousto-optic pulse shaper that is capable of shaping individual pulses differently from a mode-locked laser. The design enables the measurement of weak nonlinear optical signals such as two-photon absorption and self-phase modulation at megahertz rates. The experimental apparatus incorporates homodyne detection as a means of resolving the phase of the detected signals. The fast data acquisition rate and the ability to perform measurements in scattering media make this experimental apparatus amenable to imaging applications analogous to measurements of two-photon fluorescence using a mode-locked laser.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Chang, H. P. Sardesai, and A. M. Weiner, Opt. Lett. 23, 283 (1998).
    [CrossRef]
  2. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
    [CrossRef] [PubMed]
  3. M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, Opt. Express 16, 4192 (2008).
    [CrossRef] [PubMed]
  4. E. M. Grumstrup, S. H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, Opt. Express 15, 16681 (2007).
    [CrossRef] [PubMed]
  5. K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, Chem. Phys. 341, 89 (2007).
    [CrossRef]
  6. C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
    [CrossRef]
  7. M. C. Fischer, H. C. Liu, I. R. Piletic, Y. Escobedo-Lozoya, R. Yasuda, and W. S. Warren, Opt. Lett. 33, 219 (2008).
    [CrossRef] [PubMed]
  8. J. P. Heritage, A. M. Weiner, and R. N. Thurston, Opt. Lett. 10, 609 (1985).
    [CrossRef] [PubMed]
  9. M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
    [CrossRef] [PubMed]
  10. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999).
    [CrossRef]
  11. M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
    [CrossRef]
  12. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, Opt. Lett. 19, 737 (1994).
    [CrossRef] [PubMed]
  13. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, Opt. Lett. 25, 575 (2000).
    [CrossRef]
  14. M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, Opt. Lett. 30, 1551 (2005).
    [CrossRef] [PubMed]

2008 (2)

2007 (2)

2005 (1)

2000 (1)

1999 (2)

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999).
[CrossRef]

C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
[CrossRef]

1998 (2)

C. C. Chang, H. P. Sardesai, and A. M. Weiner, Opt. Lett. 23, 283 (1998).
[CrossRef]

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

1988 (1)

M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

1985 (1)

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Backus, S.

Bardeen, C. J.

C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
[CrossRef]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Carpenter, S. D.

C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
[CrossRef]

Chang, C. C.

Cheng, Z.

Ciocca, M.

Damrauer, N. H.

Escobedo-Lozoya, Y.

Fischer, M. C.

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Goswami, D.

Grumstrup, E. M.

Gundogdu, K.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, Chem. Phys. 341, 89 (2007).
[CrossRef]

Haner, M.

M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

Heritage, J. P.

Hillegas, C. W.

Kapteyn, H.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Laude, V.

Liu, H. C.

Maginnis, K.

Miller, A.

Montgomery, M. A.

Mourou, G.

Murnane, M.

Nelson, K. A.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, Chem. Phys. 341, 89 (2007).
[CrossRef]

M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef] [PubMed]

Piletic, I. R.

Russek, U.

Sardesai, H. P.

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Shim, S. H.

Spielmann, C.

Squier, J. A.

C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
[CrossRef]

Stone, K. W.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, Chem. Phys. 341, 89 (2007).
[CrossRef]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Strickland, D.

Thurston, R. N.

Tournois, P.

Tull, J. X.

Turner, D. B.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, Chem. Phys. 341, 89 (2007).
[CrossRef]

Vdovin, G.

Verluise, F.

Wagner, W.

Warren, W. S.

Weber, P. M.

C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
[CrossRef]

Wefers, M. M.

Weiner, A. M.

Wilson, K. R.

C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
[CrossRef]

Yakovlev, W.

C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
[CrossRef]

Yasuda, R.

Ye, T.

Yurtsever, G.

Zanni, M. T.

Zeek, E.

Appl. Phys. Lett. (1)

M. Haner and W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

Chem. Phys. (1)

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, Chem. Phys. 341, 89 (2007).
[CrossRef]

J. Biomed. Opt. (1)

C. J. Bardeen, W. Yakovlev, J. A. Squier, K. R. Wilson, S. D. Carpenter, and P. M. Weber, J. Biomed. Opt. 4, 362 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

Science (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, Science 282, 919 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Frequency domain pulse shapers containing acousto-optic modulators (AOMs) used to extract TPA and SPM. The 4 f configuration shown in (a) consists of an AOM situated between two curved mirrors (CM1 and CM2) and two diffraction gratings (DGs). This design disperses the beam into a plane whereby individual frequencies are modulated. The new interferometric pulse shaper capable of operating at tens of MHz is displayed in (b). It contains two lenses (L1 and L2), an AOM, DG, a cylindrical lens (CL), and a mirror (M) to split the beam and filter the various frequencies in order to generate a local oscillator and pump pulse.

Fig. 2
Fig. 2

TPA and SPM measurements in a quartz cuvette filled with 30 mM Rhodamine 6G in methanol using an amplified laser with 0.25 mW input power detected at 5 kHz (a) and a mode-locked laser with 52.5 mW input power detected at 10 MHz (b) and 20 MHz (c). All measurements show that TPA is present only in the sample containing Rhodamine 6G, while SPM is present in the sample as well as the glass as indicated by the shaded regions in (a). In (b) there is a significant background that is present relative to the signal intensity. It is suppressed in (c) by implementing a double modulation scheme (see text). The lock-in time constant was set to 3 ms for all experiments (only for comparison).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ̃ hom ( ω h , ϕ ) 2 = A ̃ LO ( ω h ) e i ϕ + A ̃ B ( ω h ) + z ( i η 2 α 2 ) A h 2 A h ( τ ) ˜ 1 + m e i ϕ 2 ( 1 + m e i ϕ ) 2 .

Metrics