Abstract

A widely tunable continuous intracavity-frequency-doubled singly resonant optical parametric oscillator based on MgO-doped periodically poled stoichiometric lithium tantalate crystal is described. The idler radiation resonating in the cavity is frequency doubled by an intracavity BBO crystal. Pumped in the green, this system can provide up to 485mW of single-frequency orange radiation. The system is continuously temperature tunable between 1170 and 1355nm for the idler, 876 and 975nm for the signal, and between 585 and 678nm for the doubled idler. The free-running power and frequency stability of the system have been observed to be better than those for a single-mode dye laser.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Klieber and D. Suter, Phys. Rev. B 73, 094408 (2006).
    [CrossRef]
  2. J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).
    [CrossRef] [PubMed]
  3. P. R. Hemmer, A. V. Turukhin, M. S. Shahriar, and J. A. Musser, Opt. Lett. 26, 361 (2001).
    [CrossRef]
  4. R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J.-J. Zondy, Opt. Lett. 32, 2732 (2007).
    [CrossRef] [PubMed]
  5. J.-M. Melkonian, T.-H. My, F. Bretenaker, and C. Drag, Opt. Lett. 32, 518 (2007).
    [CrossRef] [PubMed]
  6. T. Petelski, R. S. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, Opt. Lett. 26, 1013 (2001).
    [CrossRef]
  7. U. Strössner, J.-P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Rosenman, J. Mlynek, S. Schiller, and A. Peters, J. Opt. Soc. Am. B 19, 1419 (2002).
    [CrossRef]
  8. A. J. Campillo and C. L. Tang, Appl. Phys. Lett. 19, 36 (1971).
    [CrossRef]
  9. T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
    [CrossRef]
  10. P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. 8, 361 (1972).
    [CrossRef]
  11. G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
    [CrossRef]
  12. G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 2334 (1993).
    [CrossRef]
  13. G. T. Moore, K. Koch, and E. C. Cheung, Opt. Commun. 113, 463 (1995).
    [CrossRef]
  14. R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993).
    [CrossRef] [PubMed]
  15. E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 1967 (1994).
    [CrossRef] [PubMed]
  16. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, Opt. Lett. 23, 207 (1998).
    [CrossRef]
  17. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, Opt. Lett. 32, 400 (2007).
    [CrossRef] [PubMed]
  18. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, Opt. Lett. 32, 2623 (2007).
    [CrossRef] [PubMed]

2007 (4)

2006 (1)

R. Klieber and D. Suter, Phys. Rev. B 73, 094408 (2006).
[CrossRef]

2004 (1)

J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

1998 (1)

1995 (1)

G. T. Moore, K. Koch, and E. C. Cheung, Opt. Commun. 113, 463 (1995).
[CrossRef]

1994 (1)

1993 (3)

R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993).
[CrossRef] [PubMed]

G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
[CrossRef]

G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 2334 (1993).
[CrossRef]

1972 (2)

T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
[CrossRef]

P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. 8, 361 (1972).
[CrossRef]

1971 (1)

A. J. Campillo and C. L. Tang, Appl. Phys. Lett. 19, 36 (1971).
[CrossRef]

Alexander, J. I.

Arie, A.

Badr, T.

Bencheikh, K.

Bey, P. P.

P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. 8, 361 (1972).
[CrossRef]

Bosenberg, W. R.

Bretenaker, F.

Campillo, A. J.

A. J. Campillo and C. L. Tang, Appl. Phys. Lett. 19, 36 (1971).
[CrossRef]

Cheung, E. C.

G. T. Moore, K. Koch, and E. C. Cheung, Opt. Commun. 113, 463 (1995).
[CrossRef]

E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 1967 (1994).
[CrossRef] [PubMed]

Conroy, R. S.

Drag, C.

Ebrahim-Zadeh, M.

Ellingson, R. J.

Fayaz, G. R.

Giallorenzi, T. G.

T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
[CrossRef]

Hemmer, P. R.

Klieber, R.

R. Klieber and D. Suter, Phys. Rev. B 73, 094408 (2006).
[CrossRef]

Koch, K.

G. T. Moore, K. Koch, and E. C. Cheung, Opt. Commun. 113, 463 (1995).
[CrossRef]

E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 1967 (1994).
[CrossRef] [PubMed]

G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
[CrossRef]

G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 2334 (1993).
[CrossRef]

Longdell, J. J.

J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Manson, N. B.

J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Melkonian, J.-M.

Meyn, J.-P.

Mlynek, J.

Moore, G. T.

G. T. Moore, K. Koch, and E. C. Cheung, Opt. Commun. 113, 463 (1995).
[CrossRef]

E. C. Cheung, K. Koch, and G. T. Moore, Opt. Lett. 19, 1967 (1994).
[CrossRef] [PubMed]

G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 2334 (1993).
[CrossRef]

G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
[CrossRef]

Musser, J. A.

My, T.-H.

Myers, L. E.

Petelski, T.

Peters, A.

Reilly, M. H.

T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
[CrossRef]

Rosenman, G.

Samanta, G. K.

Sarrouf, R.

Schiller, S.

Sellars, M. J.

J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Shahriar, M. S.

Sousa, V.

Strössner, U.

Sun, Z.

Suter, D.

R. Klieber and D. Suter, Phys. Rev. B 73, 094408 (2006).
[CrossRef]

Tang, C. L.

R. J. Ellingson and C. L. Tang, Opt. Lett. 18, 438 (1993).
[CrossRef] [PubMed]

P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. 8, 361 (1972).
[CrossRef]

A. J. Campillo and C. L. Tang, Appl. Phys. Lett. 19, 36 (1971).
[CrossRef]

Turukhin, A. V.

Urenski, P.

Wallace, R. W.

Wallenstein, R.

Xu, G.

Zondy, J.-J.

Appl. Phys. Lett. (1)

A. J. Campillo and C. L. Tang, Appl. Phys. Lett. 19, 36 (1971).
[CrossRef]

IEEE J. Quantum Electron. (4)

T. G. Giallorenzi and M. H. Reilly, IEEE J. Quantum Electron. 8, 302 (1972).
[CrossRef]

P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. 8, 361 (1972).
[CrossRef]

G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 961 (1993).
[CrossRef]

G. T. Moore and K. Koch, IEEE J. Quantum Electron. 29, 2334 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. T. Moore, K. Koch, and E. C. Cheung, Opt. Commun. 113, 463 (1995).
[CrossRef]

Opt. Lett. (9)

Phys. Rev. B (1)

R. Klieber and D. Suter, Phys. Rev. B 73, 094408 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

J. J. Longdell, M. J. Sellars, and N. B. Manson, Phys. Rev. Lett. 93, 130503 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the green-pumped intracavity-doubled SROPO (SHG-SROPO). Only the idler (wavelength between 1175 and 1355 nm ) resonates in the ring cavity. MgO :PPSLT, parametric gain crystal; BBO, frequency-doubling crystal; M 1 M 4 , mirrors.

Fig. 2
Fig. 2

Signal output power (squares) and SHG power at the output of the BBO crystal (circles) versus SHG wavelength and PPSLT crystal temperature for an incident pump power fixed at 6.5 W . The lines are here to guide the eye.

Fig. 3
Fig. 3

SHG power (circles) mesaured at the output of mirror M 3 and signal power (squares) measured at the output of mirror M 2 versus pump power for a crystal operating at 103 ° C . At this wavelength ( 605.5 nm ) , the transmission of mirror M 3 is only 35%.

Fig. 4
Fig. 4

Free-running OPO stability measurements for a 6.5 W pump power and a SHG wavelength equal to 606 nm . (a) SHG power versus time. The rms noise is equal to 1.2%. The maximum relative level 1.0 corresponds to 100 mW red output power. Inset, SHG intensity analyzed by a scanning confocal Fabry–Perot cavity versus time (left scale) and voltage applied to the piezoelectric transducer of the cavity (right scale). (b) Free-running frequency deviations of the SHG-SROPO and of a commercial dye laser versus time. Sampling frequency, 10 Hz .

Metrics