Abstract

The fabrication of Bragg reflectors in fluorine depressed cladding silicate glass and SMF-28 fibers by employing a double-phase mask interferometer and 248nm, 500fs laser radiation is demonstrated here. The maximum refractive index changes obtained were of the order of 6×104 for pulse intensities of 220GWcm2 and accumulated energy densities of 3.5kJcm2. The Bragg gratings fabricated in the F-doped fiber endured temperatures greater than 700°C, while those inscribed in the standard telecom fiber demarcated at 900°C. The experimental results presented depict that the combination of the two phase mask interferometer and the 248nm photon at sub-TWcm2 intensities constitute an efficient route in the fabrication of Bragg gratings in low-defect silicate glass optical fibers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Albert, M. Fokine, and W. Margulis, Opt. Lett. 27, 809 (2002).
    [CrossRef]
  2. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, Opt. Lett. 28, 233 (2003).
    [CrossRef] [PubMed]
  3. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, J. Lightwave Technol. 22, 94 (2004).
    [CrossRef]
  4. K. A. Zagorulko, P. G. Kryukov, Y. V. Larionov, A. A. Rybaltovsky, E. M. Dianov, S. V. Chekalin, Y. A. Matveets, and V. O. Kompanets, Opt. Express 12, 5996 (2004).
    [CrossRef] [PubMed]
  5. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
    [CrossRef]
  6. G. Violakis, M. Konstantaki, and S. Pissadakis, IEEE Photon. Technol. Lett. 18, 1182 (2006).
    [CrossRef]
  7. A. J. Taylor, R. B. Gibson, and J. P. Roberts, Opt. Lett. 13, 814 (1988).
    [CrossRef] [PubMed]
  8. A. Yen, E. H. Anderson, R. A. Ghanbari, M. L. Schattenburg, and H. I. Smith, Appl. Opt. 31, 4540 (1992).
    [CrossRef] [PubMed]
  9. A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, Appl. Phys. Lett. 80, 1114 (2002).
    [CrossRef]
  10. N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward, J. Opt. Soc. Am. B 14, 1606 (1997).
    [CrossRef]
  11. K. P. Chen, P. R. Herman, R. Taylor, and C. Hnatovsky, J. Lightwave Technol. 21, 1969 (2003).
    [CrossRef]
  12. A. M. Streltsov and N. F. Borrelli, J. Opt. Soc. Am. B 19, 2496 (2002).
    [CrossRef]
  13. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).
    [CrossRef]
  14. T. Poulsen, O. Berendt, A. Bjarklev, L. Gruner-Nielsen, and C. E. Soccolich, Electron. Lett. 34, 1007 (1998).
    [CrossRef]

2006

G. Violakis, M. Konstantaki, and S. Pissadakis, IEEE Photon. Technol. Lett. 18, 1182 (2006).
[CrossRef]

2005

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

2004

2003

2002

1998

L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).
[CrossRef]

T. Poulsen, O. Berendt, A. Bjarklev, L. Gruner-Nielsen, and C. E. Soccolich, Electron. Lett. 34, 1007 (1998).
[CrossRef]

1997

1992

1988

Albert, J.

Allan, D. C.

Anderson, E. H.

Berendt, O.

T. Poulsen, O. Berendt, A. Bjarklev, L. Gruner-Nielsen, and C. E. Soccolich, Electron. Lett. 34, 1007 (1998).
[CrossRef]

Bjarklev, A.

T. Poulsen, O. Berendt, A. Bjarklev, L. Gruner-Nielsen, and C. E. Soccolich, Electron. Lett. 34, 1007 (1998).
[CrossRef]

Bolger, J. A.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

Borrelli, N. F.

Buckley, E.

Canning, J.

Chekalin, S. V.

Chen, K. P.

Dianov, E. M.

Ding, H.

Dragomir, A.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

Eggleton, B. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

Fokine, M.

Fu, L. B.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

Ghanbari, R. A.

Gibson, R. B.

Grobnic, D.

Groothoff, N.

Gruner-Nielsen, L.

T. Poulsen, O. Berendt, A. Bjarklev, L. Gruner-Nielsen, and C. E. Soccolich, Electron. Lett. 34, 1007 (1998).
[CrossRef]

Herman, P. R.

Hnatovsky, C.

Kazansky, P. G.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

Kompanets, V. O.

Konstantaki, M.

G. Violakis, M. Konstantaki, and S. Pissadakis, IEEE Photon. Technol. Lett. 18, 1182 (2006).
[CrossRef]

Kryukov, P. G.

Larionov, Y. V.

Lu, P.

Lyttikainen, K.

Magi, E. C.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

Margulis, W.

Marshall, G. D.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

Matveets, Y. A.

McInerney, J. G.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

Mihailov, S. J.

Nikogosyan, D. N.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

Pissadakis, S.

G. Violakis, M. Konstantaki, and S. Pissadakis, IEEE Photon. Technol. Lett. 18, 1182 (2006).
[CrossRef]

Poulsen, T.

T. Poulsen, O. Berendt, A. Bjarklev, L. Gruner-Nielsen, and C. E. Soccolich, Electron. Lett. 34, 1007 (1998).
[CrossRef]

Roberts, J. P.

Rybaltovsky, A. A.

Schattenburg, M. L.

Seward, T. P.

Skuja, L.

L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).
[CrossRef]

Smelser, C. W.

Smith, C.

Smith, H. I.

Soccolich, C. E.

T. Poulsen, O. Berendt, A. Bjarklev, L. Gruner-Nielsen, and C. E. Soccolich, Electron. Lett. 34, 1007 (1998).
[CrossRef]

Steinvurzel, P.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

Streltsov, A. M.

Taylor, A. J.

Taylor, R.

Unruh, J.

Violakis, G.

G. Violakis, M. Konstantaki, and S. Pissadakis, IEEE Photon. Technol. Lett. 18, 1182 (2006).
[CrossRef]

Walker, R. B.

Withford, M. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

Yen, A.

Zagari, J.

Zagorulko, K. A.

Appl. Opt.

Appl. Phys. Lett.

A. Dragomir, J. G. McInerney, D. N. Nikogosyan, and P. G. Kazansky, Appl. Phys. Lett. 80, 1114 (2002).
[CrossRef]

Electron. Lett.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Electron. Lett. 41, 638 (2005).
[CrossRef]

T. Poulsen, O. Berendt, A. Bjarklev, L. Gruner-Nielsen, and C. E. Soccolich, Electron. Lett. 34, 1007 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Violakis, M. Konstantaki, and S. Pissadakis, IEEE Photon. Technol. Lett. 18, 1182 (2006).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the double-phase mask interferometer.

Fig. 2
Fig. 2

Refractive index modulation Δ n mod (upper) and average index Δ n ave (lower) changes versus accumulated energy density for grating exposure in fluorine depressed cladding all-silica and SMF-28 optical fibers using 248 nm , 500 fs laser radiation.

Fig. 3
Fig. 3

Transmission spectrum of a 7 mm long Bragg grating fabricated in the fluorine depressed cladding all-silica optical fiber, using 248 nm , 500 fs laser radiation.

Fig. 4
Fig. 4

Isochronal thermal annealing results for Bragg gratings recorded in fluorine depressed cladding all-silica and SMF-28 optical fibers.

Metrics