Abstract

Specific configurations of four linearly polarized, monochromatic plane waves have previously been shown to be capable of producing interference patterns exhibiting the symmetries inherent in all 14 Bravais lattices. We present (1) the range of possible absolute contrasts, (2) the conditions for unity absolute contrast, and (3) the types of interference patterns possible for configurations of four beams interference that satisfy the uniform contrast condition. Results are presented for three Bravais lattice structures: Base- and face-centered cubic and simple cubic.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
    [CrossRef] [PubMed]
  2. A. Chelnokov, S. David, K. Wang, F. Marty, and J. M. Lourtioz, IEEE J. Sel. Top. Quantum Electron. 8, 919 (2002).
    [CrossRef]
  3. L. Pang, W. Nakagawa, and Y. Fainman, Appl. Opt. 42, 5450 (2003).
    [CrossRef] [PubMed]
  4. S. Venkataraman, G. J. Schneider, J. Murakowski, S. Shi, and D. W. Prather, Appl. Phys. Lett. 85, 2125 (2004).
    [CrossRef]
  5. L. Z. Cai, X. L. Yang, and Y. R. Wang, Opt. Lett. 27, 900 (2002).
    [CrossRef]
  6. W. Mao, Y. Zhong, J. Dong, and H. Wang, J. Opt. Soc. Am. B 22, 1085 (2005).
    [CrossRef]
  7. J. L. Stay and T. K. Gaylord, Appl. Opt. 47, 3221 (2008).
    [CrossRef] [PubMed]
  8. L. Z. Cai, X. L. Yang, and Y. R. Wang, Opt. Lett. 26, 1858 (2001).
    [CrossRef]
  9. L. Z. Cai, X. L. Yang, and Y. R. Wang, J. Opt. Soc. Am. A 19, 2238 (2002).
    [CrossRef]

2008 (1)

2005 (1)

2004 (1)

S. Venkataraman, G. J. Schneider, J. Murakowski, S. Shi, and D. W. Prather, Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

2003 (1)

2002 (3)

2001 (1)

2000 (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Cai, L. Z.

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Chelnokov, A.

A. Chelnokov, S. David, K. Wang, F. Marty, and J. M. Lourtioz, IEEE J. Sel. Top. Quantum Electron. 8, 919 (2002).
[CrossRef]

David, S.

A. Chelnokov, S. David, K. Wang, F. Marty, and J. M. Lourtioz, IEEE J. Sel. Top. Quantum Electron. 8, 919 (2002).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Dong, J.

Fainman, Y.

Gaylord, T. K.

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Lourtioz, J. M.

A. Chelnokov, S. David, K. Wang, F. Marty, and J. M. Lourtioz, IEEE J. Sel. Top. Quantum Electron. 8, 919 (2002).
[CrossRef]

Mao, W.

Marty, F.

A. Chelnokov, S. David, K. Wang, F. Marty, and J. M. Lourtioz, IEEE J. Sel. Top. Quantum Electron. 8, 919 (2002).
[CrossRef]

Murakowski, J.

S. Venkataraman, G. J. Schneider, J. Murakowski, S. Shi, and D. W. Prather, Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

Nakagawa, W.

Pang, L.

Prather, D. W.

S. Venkataraman, G. J. Schneider, J. Murakowski, S. Shi, and D. W. Prather, Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

Schneider, G. J.

S. Venkataraman, G. J. Schneider, J. Murakowski, S. Shi, and D. W. Prather, Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Shi, S.

S. Venkataraman, G. J. Schneider, J. Murakowski, S. Shi, and D. W. Prather, Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

Stay, J. L.

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Venkataraman, S.

S. Venkataraman, G. J. Schneider, J. Murakowski, S. Shi, and D. W. Prather, Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

Wang, H.

Wang, K.

A. Chelnokov, S. David, K. Wang, F. Marty, and J. M. Lourtioz, IEEE J. Sel. Top. Quantum Electron. 8, 919 (2002).
[CrossRef]

Wang, Y. R.

Yang, X. L.

Zhong, Y.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Venkataraman, G. J. Schneider, J. Murakowski, S. Shi, and D. W. Prather, Appl. Phys. Lett. 85, 2125 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Chelnokov, S. David, K. Wang, F. Marty, and J. M. Lourtioz, IEEE J. Sel. Top. Quantum Electron. 8, 919 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nature (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, Nature 404, 53 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Four-beam interference resulting in (a) face-centered, (b) body-centered, and (c) simple cubic lattices. Isocontours are drawn to encompass volumes of material experiencing relatively high intensities. Solutions resulting in V > 0 with intensity maxima (left) and in V < 0 with intensity minima (right) located at lattice points. Optimized parameters for these solutions are summarized in Tables 1, 2.  

Tables (2)

Tables Icon

Table 1 Optimized Parameters for Lattices Maximizing Absolute Contrast with V > 0

Tables Icon

Table 2 Optimized Parameters for Lattices Maximizing Absolute Contrast with V < 0

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I T ( r ) = I 0 ( 1 + i = 1 N j > i N V i j cos ( ( k j k i ) r + ϕ i ϕ j ) ) ,
I 0 = i = 1 N 1 2 E i 2 , V i j = E i E j e i j I 0 , e i j = e ̂ i e ̂ j ,
e 12 e 34 = e 13 e 24 = e 14 e 23 ,
E 2 E 1 = e 13 e 23 , E 3 E 1 = e 12 e 23 , E 4 E 1 = e 12 e 24 .
V i j = V = 2 e 12 e 13 e 23 e 12 2 + e 13 2 + e 23 2 + e 13 2 e 23 2 e 34 2 .
V a b s = I max I min I max + I min ,
V a b s = 4 V 1 + 2 .
P = g 12 ( G 13 × G 14 ) + g 13 ( G 14 × G 12 ) + g 14 ( G 12 × G 13 ) G 12 ( G 13 × G 14 ) ,

Metrics