Abstract

Silicon microring resonators are proposed to achieve ultrasmall differential quadrature phase-shift keying modulators and demodulators operated at 20Gbโˆ•s, which may require a dramatically reduced chip size. The modulators are characterized in terms of the carrier transit time and misalignment of the driving signals, while the demodulation performance is analyzed in terms of the bandwidth and frequency detuning of the demodulator. A bit-error rate of <10โˆ’9 is achieved using all microring-based devices in the back-to-back case.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription