Abstract

The response of an optical frequency comb from an etalon-based coupled optoelectronic oscillator to changes in drive current, optoelectronic loop phase, modulator bias, and laser cavity length has been measured. It is found that controlling the phase of the optoelectronic loop is best suited for control of the pulse repetition rate, whereas controlling the laser cavity length is best for stabilization of the optical carrier frequency. Moreover, by measuring the instabilities of the carrier frequency at the fixed-point frequency of the optoelectronic phase, changes to the optoelectronic phase can be decoupled from changes to the laser cavity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izanpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701-2719 (2006).
    [CrossRef]
  2. F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, “Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” J. Lightwave Technol. (to be published).
  3. D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, in 2002 IEEE Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580-583.
    [CrossRef]
  4. R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  5. N. R. Newbury and W. C. Swann, J. Opt. Soc. Am. B 24, 1756 (2007).
    [CrossRef]
  6. N. Yu, E. Salik, and L. Maleki, Opt. Lett. 30, 1231 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (1)

1983 (1)

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Choi, M.-T.

Delfyett, P. J.

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izanpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701-2719 (2006).
[CrossRef]

F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, “Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” J. Lightwave Technol. (to be published).

Drever, R. W.

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Eliyahu, D.

D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, in 2002 IEEE Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580-583.
[CrossRef]

Ford, G. M.

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gee, S.

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izanpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701-2719 (2006).
[CrossRef]

F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, “Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” J. Lightwave Technol. (to be published).

Hall, P. J. L.

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Izanpanah, H.

Kamran, M.

D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, in 2002 IEEE Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580-583.
[CrossRef]

Kowalski, F. V.

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Lee, W.

Maleki, L.

Munley, A. J.

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Newbury, N. R.

Ozharar, S.

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izanpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701-2719 (2006).
[CrossRef]

F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, “Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” J. Lightwave Technol. (to be published).

Quinlan, F.

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izanpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701-2719 (2006).
[CrossRef]

F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, “Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” J. Lightwave Technol. (to be published).

Salik, E.

Sariri, K.

D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, in 2002 IEEE Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580-583.
[CrossRef]

Swann, W. C.

Tokhmakhian, M.

D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, in 2002 IEEE Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580-583.
[CrossRef]

Ward, H.

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Williams, C.

F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, “Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” J. Lightwave Technol. (to be published).

Yilmaz, T.

Yu, N.

Appl. Phys. B (1)

R. W. Drever, P. J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Other (2)

F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, “Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” J. Lightwave Technol. (to be published).

D. Eliyahu, K. Sariri, M. Kamran, and M. Tokhmakhian, in 2002 IEEE Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580-583.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Intracavity etalon-based coupled optoelectronic (OE) oscillator with Pound–Drever–Hall stabilization. SOA, semiconductor optical amplifier; I, isolator; PC, polarization controller; FL, fiber launcher; FPE, Fabry–Perot etalon; FS, fiber stretcher; DCF, dispersion compensating fiber; IM, intensity modulator; PD, photo detector; VCPS, voltage controller phase shifter; PS, phase shifter; DBM, double balanced mixer; TBPF, tunable bandpass filter; PM, phase modulator; LNA, low-noise amplifier; PBS, polarization beam splitter; OC, optical circulator. Gray arrows indicate feedback loop beam path in free space.

Fig. 2
Fig. 2

Optical spectra. (a) High-resolution spectrum. The dashed arrows indicate COEO comb lines; the black arrow indicates the cw laser line. Other spurs are artifacts of the high-resolution spectrum analyzer. (b) Full spectrum of the COEO. The arrow indicates the location of the cw laser.

Fig. 3
Fig. 3

Optoelectronic loop phase fixed-point measurement. (a) Changes in the optical frequency as the phase is square-wave modulated. Noise is due mainly to instabilities in the cw laser. (b) Changes in the repetition rate as the phase is square-wave modulated.

Fig. 4
Fig. 4

Cavity length change in fiber fixed-point measurement, showing changes in the repetition rate and changes in the optical frequency as the voltage to a fiber stretcher is square-wave modulated. An upper bound on the repetition rate change of 30 Hz puts an upper bound on the fixed point of 36 THz .

Fig. 5
Fig. 5

Summary of fixed-point measurements. The COEO spectrum, centered at 194.1 THz , is included for reference.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν n = ν c + n f rep ,
ν fix = ν n ( δ ν n δ f rep ) f rep .
δ f rep = δ φ ( f rep 2 Q R ) ,

Metrics