Abstract

We demonstrate that the phase of light transmitted through double-layer subwavelength metallic slit arrays can be controlled through lateral shift of the two layers. Our samples consist of two aluminum layers, each of which contains an array of subwavelength slits. The two layers are placed in sufficient proximity to allow coupling of the evanescent fields at resonance. By changing the lateral shift between the layers from zero to half the period, the phase of the transmitted electromagnetic field is increased by π, while the transmitted intensity remains high. Such a controllable phase delay could open new capabilities for nanophotonic devices that cannot be achieved with single-layer structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription