Abstract

A novel fiber Bragg grating (FBG) sensing system based on a spectrum-limited Fourier domain mode-locking (SL-FDML) fiber laser is proposed. Multiple FBGs cascaded in a long fiber are utilized as both the sensors in the system and the wavelength-selected components in the SL-FDML fiber laser. Both wavelength-division multiplexing and spatial-division multiplexing techniques are demonstrated for interrogation of multiple FBGs by mapping the wavelength measurement to the time measurement and by adjusting the driving frequency of the SL-FDML fiber laser. The proposed FBG sensing system, employing techniques of the wavelength- and spatial-domain interrogation of multiple FBGs, can be used in remote and quasi-distributed multipoint sensing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
    [CrossRef]
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993).
    [CrossRef] [PubMed]
  3. M. A. Davis and A. D. Kersey, Electron. Lett. 31, 822 (1995).
    [CrossRef]
  4. G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Z. Zhang, and C. P. Gover, Opt. Lett. 29, 2222 (2004).
    [CrossRef] [PubMed]
  5. Y. Yu, L. Lui, H. Tam, and W. Chung, IEEE Photon. Technol. Lett. 13, 702 (2001).
    [CrossRef]
  6. P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 230 (2004).
    [CrossRef]
  7. P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
    [CrossRef]
  8. R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225 (2006).
    [CrossRef] [PubMed]

2006

2004

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 230 (2004).
[CrossRef]

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Z. Zhang, and C. P. Gover, Opt. Lett. 29, 2222 (2004).
[CrossRef] [PubMed]

2001

Y. Yu, L. Lui, H. Tam, and W. Chung, IEEE Photon. Technol. Lett. 13, 702 (2001).
[CrossRef]

1997

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

1995

M. A. Davis and A. D. Kersey, Electron. Lett. 31, 822 (1995).
[CrossRef]

1993

Askins, C. G.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Berkoff, T. A.

Chi, S.

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 230 (2004).
[CrossRef]

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

Chung, W.

Y. Yu, L. Lui, H. Tam, and W. Chung, IEEE Photon. Technol. Lett. 13, 702 (2001).
[CrossRef]

Davis, M. A.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, Electron. Lett. 31, 822 (1995).
[CrossRef]

Friebele, E. J.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Fujimoto, J. G.

Gover, C. P.

Huber, R.

Keresy, A. D.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Kersey, A. D.

Koo, K. P.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

LeBlanc, M.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Lin, J.-H.

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 230 (2004).
[CrossRef]

Lu, Z. G.

Lui, L.

Y. Yu, L. Lui, H. Tam, and W. Chung, IEEE Photon. Technol. Lett. 13, 702 (2001).
[CrossRef]

Morey, W. W.

Patrick, H. J.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Peng, P.-C.

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 230 (2004).
[CrossRef]

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

Putnam, M. A.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Sun, F. G.

Tam, H.

Y. Yu, L. Lui, H. Tam, and W. Chung, IEEE Photon. Technol. Lett. 13, 702 (2001).
[CrossRef]

Tseng, H.-Y.

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 230 (2004).
[CrossRef]

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

Wojtkowski, M.

Xiao, G. Z.

Yu, Y.

Y. Yu, L. Lui, H. Tam, and W. Chung, IEEE Photon. Technol. Lett. 13, 702 (2001).
[CrossRef]

Zhang, Z.

Zhao, P.

Electron. Lett.

M. A. Davis and A. D. Kersey, Electron. Lett. 31, 822 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Yu, L. Lui, H. Tam, and W. Chung, IEEE Photon. Technol. Lett. 13, 702 (2001).
[CrossRef]

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 230 (2004).
[CrossRef]

P.-C. Peng, J.-H. Lin, H.-Y. Tseng, and S. Chi, IEEE Photon. Technol. Lett. 16, 575 (2004).
[CrossRef]

J. Lightwave Technol.

A. D. Keresy, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, J. Lightwave Technol. 15, 1442 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the FBG sensing system based on a SL-FDML fiber laser. SOA, semiconductor optical amplifier; ISO, isolator; TF, tunable filter; OC, optical circulator; EDFA, erbium-doped fiber amplifier; C1, C2, couplers; OSA, optical spectrum analyzer; SMF, single-mode fiber; DSF, dispersion-shifted fiber; FBG, fiber Bragg grating; P, FC/PC point.

Fig. 2
Fig. 2

Output spectra of (a) the FDML fiber laser, (b) the SL-FDML fiber laser driven at 37.432 kHz , and (c) the SL-FDML fiber laser driven at 28.776 kHz .

Fig. 3
Fig. 3

Time-domain spectra (solid curves) of the SL-FDML laser when the driving frequency is (a) 37.432, (b) 28.776, and (c) 112.30 kHz . Dotted curves show the trigger signal of the driver.

Fig. 4
Fig. 4

(a) Measured optical spectrum of the SL-FDML fiber laser when FBG3 is under strain tuning; (b) measured time-domain spectrum of the SL-FDML fiber laser when FBG3 is under strain tuning.

Fig. 5
Fig. 5

(a), (c) Output spectra and (b), (d) time-domain spectra of the SL-FDML fiber laser with (a), (b) 2.7 km SMF1 and 57 m SMF2 or (c), (d) 20 km SMF1 and 0.8 km SMF2 when the driving frequency is (a), (b) 36.874 kHz (solid curves); (a), (b) 37.432 kHz (dotted curves); or (c), (d) 5.3852 kHz .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L = v Δ λ f Δ λ TF ,

Metrics