Abstract

A known algorithm for modeling quasi-periodic lattices is used to generate two-dimensional quadratic nonlinear photonic quasi-crystals containing a set of desired discrete spectral components. This allows us to fabricate optical devices in which an arbitrary set of nonlinear optical processes can be efficient. We demonstrate this capability by fabricating two devices: a multidirectional single-frequency doubler and a multidirectional, multifrequency doubler that is capable of nearly collinear doubling of cw radiation in the optical communication C band (15301570nm) through angle tuning.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  2. S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
    [CrossRef]
  3. G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
    [CrossRef]
  4. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
    [CrossRef]
  5. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
    [CrossRef] [PubMed]
  6. S. Saltiel and Y. S. Kivshar, Opt. Lett. 25, 1204 (2000).
    [CrossRef]
  7. A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
    [CrossRef]
  8. K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2001).
    [CrossRef]
  9. R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, Opt. Lett. 30, 424 (2005).
    [CrossRef] [PubMed]
  10. B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
    [CrossRef]
  11. Y. Sheng, J. Dou, B. Cheng, and D. Zhang, Appl. Phys. B 87, 603 (2007).
    [CrossRef]
  12. R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
    [CrossRef] [PubMed]
  13. A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, J. Opt. Soc. Am. B 24, 1916 (2007).
    [CrossRef]
  14. A. Bahabad, R. Lifshitz, N. Voloch, and A. Arie, Philos. Mag., doi: 10.1080/14786430802060715 (2008).
  15. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, Opt. Lett. 28, 194 (2003).
    [CrossRef] [PubMed]
  16. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  17. T. Ellenbogen, A. Arie, and S. M. Saltiel, Opt. Lett. 32, 262 (2007).
    [CrossRef] [PubMed]
  18. W. Steurer and D. Sutter-Widmer, J. Phys. D 40, R229 (2007).
    [CrossRef]

2007 (5)

Y. Sheng, J. Dou, B. Cheng, and D. Zhang, Appl. Phys. B 87, 603 (2007).
[CrossRef]

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

W. Steurer and D. Sutter-Widmer, J. Phys. D 40, R229 (2007).
[CrossRef]

T. Ellenbogen, A. Arie, and S. M. Saltiel, Opt. Lett. 32, 262 (2007).
[CrossRef] [PubMed]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, J. Opt. Soc. Am. B 24, 1916 (2007).
[CrossRef]

2005 (3)

R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, Opt. Lett. 30, 424 (2005).
[CrossRef] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

2003 (1)

2001 (1)

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2001).
[CrossRef]

2000 (2)

S. Saltiel and Y. S. Kivshar, Opt. Lett. 25, 1204 (2000).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

1998 (1)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

1997 (1)

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
[CrossRef]

1996 (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Arie, A.

T. Ellenbogen, A. Arie, and S. M. Saltiel, Opt. Lett. 32, 262 (2007).
[CrossRef] [PubMed]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, J. Opt. Soc. Am. B 24, 1916 (2007).
[CrossRef]

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2001).
[CrossRef]

A. Bahabad, R. Lifshitz, N. Voloch, and A. Arie, Philos. Mag., doi: 10.1080/14786430802060715 (2008).

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bahabad, A.

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, J. Opt. Soc. Am. B 24, 1916 (2007).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

A. Bahabad, R. Lifshitz, N. Voloch, and A. Arie, Philos. Mag., doi: 10.1080/14786430802060715 (2008).

Berger, V.

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

Blau, P.

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Bratfalean, R. T.

Broderick, N. G. R.

R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, Opt. Lett. 30, 424 (2005).
[CrossRef] [PubMed]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Bruner, A.

Cheng, B.

Y. Sheng, J. Dou, B. Cheng, and D. Zhang, Appl. Phys. B 87, 603 (2007).
[CrossRef]

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Dou, J.

Y. Sheng, J. Dou, B. Cheng, and D. Zhang, Appl. Phys. B 87, 603 (2007).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eger, D.

Ellenbogen, T.

Fradkin-Kashi, K.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2001).
[CrossRef]

Gallo, K.

Habshoosh, N.

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Katz, M.

Kivshar, Y. S.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Lewen, R.

Lifshitz, R.

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, J. Opt. Soc. Am. B 24, 1916 (2007).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

A. Bahabad, R. Lifshitz, N. Voloch, and A. Arie, Philos. Mag., doi: 10.1080/14786430802060715 (2008).

Ma, B.

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Ming, N.-B.

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
[CrossRef]

Ni, P.

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Oron, M. B.

Peacock, A. C.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Rosenman, G.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2001).
[CrossRef]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

Ruschin, S.

Saltiel, S.

Saltiel, S. M.

Sheng, Y.

Y. Sheng, J. Dou, B. Cheng, and D. Zhang, Appl. Phys. B 87, 603 (2007).
[CrossRef]

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Steurer, W.

W. Steurer and D. Sutter-Widmer, J. Phys. D 40, R229 (2007).
[CrossRef]

Sutter-Widmer, D.

W. Steurer and D. Sutter-Widmer, J. Phys. D 40, R229 (2007).
[CrossRef]

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Urenski, P.

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2001).
[CrossRef]

Voloch, N.

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, J. Opt. Soc. Am. B 24, 1916 (2007).
[CrossRef]

A. Bahabad, R. Lifshitz, N. Voloch, and A. Arie, Philos. Mag., doi: 10.1080/14786430802060715 (2008).

Wang, T.

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Wang, Y.

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Zhang, D.

Y. Sheng, J. Dou, B. Cheng, and D. Zhang, Appl. Phys. B 87, 603 (2007).
[CrossRef]

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Zhu, S.-N.

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
[CrossRef]

Zhu, Y.-Y.

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
[CrossRef]

Appl. Phys. B (1)

Y. Sheng, J. Dou, B. Cheng, and D. Zhang, Appl. Phys. B 87, 603 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

B. Ma, T. Wang, Y. Sheng, P. Ni, Y. Wang, B. Cheng, and D. Zhang, Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

W. Steurer and D. Sutter-Widmer, J. Phys. D 40, R229 (2007).
[CrossRef]

Opt. Lett. (4)

Opt. Quantum Electron. (2)

A. Arie, N. Habshoosh, and A. Bahabad, Opt. Quantum Electron. 39, 361 (2007).
[CrossRef]

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Phys. Rev. Lett. (4)

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, Phys. Rev. Lett. 84, 4345 (2000).
[CrossRef] [PubMed]

K. Fradkin-Kashi, A. Arie, P. Urenski, and G. Rosenman, Phys. Rev. Lett. 88, 023903 (2001).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Science (1)

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, Science 278, 843 (1997).
[CrossRef]

Other (1)

A. Bahabad, R. Lifshitz, N. Voloch, and A. Arie, Philos. Mag., doi: 10.1080/14786430802060715 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A microscope image of the Z + surfaces of the NPQCs after selective etching, embedded within the underlying quasi-periodic lattices: (a) the SHG fan, (b) the frequency fan.

Fig. 2
Fig. 2

Diffraction picture of the NPQCs. Theoretical calculation embedded within an experimental optical diffraction image. The arrows indicate predefined RLVs. The images went high-pass filtering by removing the diffraction information around the center: (a) the SHG fan, (b) the frequency fan.

Fig. 3
Fig. 3

Phase-matching conditions for the frequency fan as a function of fundamental wavelength and angle of propagation. Each parabola corresponds to one of the predefined RLVs. The dashed line represents idealized collinear phase matching of the C band ( 1530 1570 nm ) . In bold is the closest available path to this line. Experimental results were offset by 2.5 nm .

Tables (2)

Tables Icon

Table 1 Conversion Efficiencies for the SHG Fan a

Tables Icon

Table 2 Conversion Efficiencies for the Frequency Fan a

Metrics