Abstract

We have developed an atomic force microscope-tip-based concept to pattern metallic nanoparticles on substrates. This new process has the potential to control the assembly of nanometer sized particles by combining their unique optical and thermophysical properties and is a flexible and low energy method of patterning at the nanoscale. The proof of concept is detailed by preliminary experimental work showing selective melting and evaporation of groups of 50 and 100nm gold spherical particles.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  2. C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
    [CrossRef]
  3. P. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).
    [CrossRef]
  4. S. Inasawa, M. Sugiyama, and Y. Yamaguchi, J. Phys. Chem. B 109, 3104 (2005).
    [CrossRef]
  5. H. B. Liu, J. A. Ascencio, M. Perez-Alvarez, and M. J. Yacaman, Surf. Sci. 491, 88 (2001).
    [CrossRef]
  6. K. K. Nanda, Appl. Phys. Lett. 87, 021909 (2005).
    [CrossRef]
  7. K. K. Nanda, A. Maisels, F. E. Kruis, and B. Rellinghaus, EPL 80, 56003 (2007).
    [CrossRef]
  8. E. A. Hawes, “Selective heating of nanoscale materials using near-field radiative transfer and surface plasmon resonance,” Ph.D. dissertation (University of Kentucky, 2007).
  9. E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 104, 199 (2007).
    [CrossRef]

2007

K. K. Nanda, A. Maisels, F. E. Kruis, and B. Rellinghaus, EPL 80, 56003 (2007).
[CrossRef]

E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 104, 199 (2007).
[CrossRef]

2005

K. K. Nanda, Appl. Phys. Lett. 87, 021909 (2005).
[CrossRef]

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, J. Phys. Chem. B 109, 3104 (2005).
[CrossRef]

2001

H. B. Liu, J. A. Ascencio, M. Perez-Alvarez, and M. J. Yacaman, Surf. Sci. 491, 88 (2001).
[CrossRef]

1996

C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
[CrossRef]

1976

P. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).
[CrossRef]

Ascencio, J. A.

H. B. Liu, J. A. Ascencio, M. Perez-Alvarez, and M. J. Yacaman, Surf. Sci. 491, 88 (2001).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Borel, J. P.

P. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).
[CrossRef]

Buffat, P.

P. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).
[CrossRef]

Crofcheck, C.

E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 104, 199 (2007).
[CrossRef]

Dereux, A.

C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
[CrossRef]

Girard, C.

C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
[CrossRef]

Hastings, J. T.

E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 104, 199 (2007).
[CrossRef]

Hawes, E. A.

E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 104, 199 (2007).
[CrossRef]

E. A. Hawes, “Selective heating of nanoscale materials using near-field radiative transfer and surface plasmon resonance,” Ph.D. dissertation (University of Kentucky, 2007).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Inasawa, S.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, J. Phys. Chem. B 109, 3104 (2005).
[CrossRef]

Kruis, F. E.

K. K. Nanda, A. Maisels, F. E. Kruis, and B. Rellinghaus, EPL 80, 56003 (2007).
[CrossRef]

Liu, H. B.

H. B. Liu, J. A. Ascencio, M. Perez-Alvarez, and M. J. Yacaman, Surf. Sci. 491, 88 (2001).
[CrossRef]

Maisels, A.

K. K. Nanda, A. Maisels, F. E. Kruis, and B. Rellinghaus, EPL 80, 56003 (2007).
[CrossRef]

Mengüç, M. P.

E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 104, 199 (2007).
[CrossRef]

Nanda, K. K.

K. K. Nanda, A. Maisels, F. E. Kruis, and B. Rellinghaus, EPL 80, 56003 (2007).
[CrossRef]

K. K. Nanda, Appl. Phys. Lett. 87, 021909 (2005).
[CrossRef]

Perez-Alvarez, M.

H. B. Liu, J. A. Ascencio, M. Perez-Alvarez, and M. J. Yacaman, Surf. Sci. 491, 88 (2001).
[CrossRef]

Rellinghaus, B.

K. K. Nanda, A. Maisels, F. E. Kruis, and B. Rellinghaus, EPL 80, 56003 (2007).
[CrossRef]

Sugiyama, M.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, J. Phys. Chem. B 109, 3104 (2005).
[CrossRef]

Yacaman, M. J.

H. B. Liu, J. A. Ascencio, M. Perez-Alvarez, and M. J. Yacaman, Surf. Sci. 491, 88 (2001).
[CrossRef]

Yamaguchi, Y.

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, J. Phys. Chem. B 109, 3104 (2005).
[CrossRef]

Appl. Phys. Lett.

K. K. Nanda, Appl. Phys. Lett. 87, 021909 (2005).
[CrossRef]

EPL

K. K. Nanda, A. Maisels, F. E. Kruis, and B. Rellinghaus, EPL 80, 56003 (2007).
[CrossRef]

J. Phys. Chem. B

S. Inasawa, M. Sugiyama, and Y. Yamaguchi, J. Phys. Chem. B 109, 3104 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, J. Quant. Spectrosc. Radiat. Transf. 104, 199 (2007).
[CrossRef]

Phys. Rev. A

P. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).
[CrossRef]

Rep. Prog. Phys.

C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).
[CrossRef]

Surf. Sci.

H. B. Liu, J. A. Ascencio, M. Perez-Alvarez, and M. J. Yacaman, Surf. Sci. 491, 88 (2001).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

E. A. Hawes, “Selective heating of nanoscale materials using near-field radiative transfer and surface plasmon resonance,” Ph.D. dissertation (University of Kentucky, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Nanopatterning concept showing a scanning probe tip in proximity to nanoparticles excited via total internal reflection at their SPR wavelength. a, Calculated absorption enhancement is plotted along with the two-dimensional representation of the system, where d is the diameter of the particle and the probe is moving along the side of the particle; b, three-dimensional representation of the system, where A is the boundary for enhanced absorption. The inset shows a model of the enhanced electric field (darker areas indicate strong fields) between the probe and a particle.

Fig. 2
Fig. 2

AFM images depicting evaporation of 50 nm particles, a 1065 nm × 1065 nm area; b shows a smaller area, 445 nm × 445 nm , before any light is incident; c shows the same area as b after the area has been scanned while exposed to light; d shows the same area as a after the area has been scanned while exposed to light. The boxes are a visual aid and denote the targeted area. Arrows indicating matching features in a and d are included for clarity, because the diagonal line in a is an artifact of imaging. The height scale is 57 nm .

Fig. 3
Fig. 3

AFM images depicting evaporation of 100 nm particles, a 2937 nm × 2937 nm area; b shows a smaller area, 1447 nm × 1447 nm before any light is incident; c shows the same area as b after the area has been scanned while exposed to light; d shows the same area as a after the area has been scanned while exposed to light. The boxes are a visual aid and denote the targeted area. The height scale is 93 nm .

Fig. 4
Fig. 4

AFM images depicting melting of (a, b) 50 and (c, d) 100 nm particles; a, 1869 nm × 1869 nm area, height scale is 65 nm ; b shows the same area as a after the area has been scanned while exposed to light. Boxes highlight the melted area, 655 nm × 655 nm , the maximum feature height is 35 nm ; c, 3271 nm × 3271 nm area, the height scale is 90 nm ; and d shows the same area as c. Boxes highlight the melted area, 823 nm × 823 nm .

Fig. 5
Fig. 5

E abs is plotted against t b for (a) 30 nm average probe height (melting observed) and (b) 20 nm above the surface (evaporation observed). Open symbols indicate an experiment where melting or evaporation did not occur, and closed symbols indicate an experiment where melting or evaporation occurred. In both cases we clearly observed defined threshold interaction times beyond which melting or evaporation occurs.

Metrics