Abstract

Metamaterials provide unprecedented freedom and flexibility in the creation of new structures, which control electromagnetic wave propagation in very unusual ways. Very recently various theoretical designs for an electromagnetic cloak were suggested and an experimental realization of a partial cloak operating in a two-dimensional cylindrical geometry were reported in the microwave frequency range. We report on an experimental two-dimensional reduced visibility structure that approximates the distribution of the radial component of the dielectric permittivity necessary to achive nonmagnetic cloaking in the visible frequency range.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Greenleaf, M. Lassas, and G. Uhlmann, Commun. Pure Appl. Math. 56, 328 (2003).
    [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  3. U. Leonhardt, Science 312, 1777 (2006).
    [CrossRef] [PubMed]
  4. A. Alu and N. Engheta, Opt. Express 15, 7578 (2007).
    [CrossRef] [PubMed]
  5. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics 1, 224 (2007).
    [CrossRef]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105 (2007).
    [CrossRef]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
    [CrossRef] [PubMed]
  8. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
    [CrossRef] [PubMed]
  9. I. I. Smolyaninov, Proc. SPIE 6638, 663803 (2007).
    [CrossRef]
  10. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Phys. Rev. B 76, 205424 (2007).
    [CrossRef]
  11. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
    [CrossRef]
  12. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, arXiv:0709.2862v1 [physics.optics]

2007 (6)

A. Alu and N. Engheta, Opt. Express 15, 7578 (2007).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics 1, 224 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Proc. SPIE 6638, 663803 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Phys. Rev. B 76, 205424 (2007).
[CrossRef]

2006 (3)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef] [PubMed]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

2003 (1)

A. Greenleaf, M. Lassas, and G. Uhlmann, Commun. Pure Appl. Math. 56, 328 (2003).
[CrossRef]

Alu, A.

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics 1, 224 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics 1, 224 (2007).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Phys. Rev. B 76, 205424 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, arXiv:0709.2862v1 [physics.optics]

Engheta, N.

Greenleaf, A.

A. Greenleaf, M. Lassas, and G. Uhlmann, Commun. Pure Appl. Math. 56, 328 (2003).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Phys. Rev. B 76, 205424 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, arXiv:0709.2862v1 [physics.optics]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics 1, 224 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Lassas, M.

A. Greenleaf, M. Lassas, and G. Uhlmann, Commun. Pure Appl. Math. 56, 328 (2003).
[CrossRef]

Leonhardt, U.

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Milton, G. W.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics 1, 224 (2007).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, Proc. SPIE 6638, 663803 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Phys. Rev. B 76, 205424 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, arXiv:0709.2862v1 [physics.optics]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

Uhlmann, G.

A. Greenleaf, M. Lassas, and G. Uhlmann, Commun. Pure Appl. Math. 56, 328 (2003).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, Appl. Phys. Lett. 91, 111105 (2007).
[CrossRef]

Commun. Pure Appl. Math. (1)

A. Greenleaf, M. Lassas, and G. Uhlmann, Commun. Pure Appl. Math. 56, 328 (2003).
[CrossRef]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics 1, 224 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).
[CrossRef]

Phys. Rev. B (1)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Phys. Rev. B 76, 205424 (2007).
[CrossRef]

Proc. SPIE (1)

I. I. Smolyaninov, Proc. SPIE 6638, 663803 (2007).
[CrossRef]

Science (4)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt, Science 312, 1777 (2006).
[CrossRef] [PubMed]

Other (1)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, arXiv:0709.2862v1 [physics.optics]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Real and imaginary parts of the wave vector of the symmetric surface plasmon mode propagating along a 50 nm thick gold film in the PMMA–gold–glass and vacuum–gold–glass geometries as a function of frequency. In the frequency range marked by the box PMMA areas have effective negative refractive index as perceived by plasmons, while the gold–vacuum interface looks like a medium with positive refractive index. The antisymmetric plasmon mode exhibits very high propagation losses and is not shown. (b) and (c) show AFM images of the central area of the 2D cloak at different magnifications. (d) The distribution of ε r 1 2 in the fabricated 2D model reduced visibility device compared to the theoretical distribution given by Eq. (1).

Fig. 2
Fig. 2

(a) Plasmon ray propagation in a “magnifying superlens” concentric ring structure from [8]. (b) Bending of the plasmon ray by the slanted array of PMMA stripes in a parabolic lens structure shown in (d). Ray optics simulation of beam bending by a stack of slanted negative index layers is shown in (c). The refractive index of gray stripes is assumed to be n 2 = 1 . (e) and (f) show numerical simulations of the same effect performed using COMSOL Multiphysics 3.3a.

Fig. 3
Fig. 3

(a) Numerical validation of the 2D cloaking design based on the variable diameter negative index rings performed using COMSOL Multiphysics 3.3a. Distribution of the magnetic field is shown upon the illumination of the cloaking structure from the left. (b) Refractive index distribution within the 2D cloaking structure shown in (a).

Fig. 4
Fig. 4

(a) Two plasmonic reduced visibility devices are observed using an optical microscope with white light illumination. The inset shows an AFM image of the central area of the device. (b) Optical image of surface plasmon–polariton propagation through these structures at 532 nm . The area inside the circle of radius r 1 is cloaked, except for a very small fraction of plasmon rays, which propagate exactly through the center of the cloak. The illumination direction is shown by the arrow. The inset demonstrates plasmon scattering by a typical concentric ring structure, which is not optimized for cloaking at 532 nm . The plasmons are strongly scattered by the edge of the structure and by the circular area in the middle. (c) False color representation of the measured plasmon field scattering around the central area of the device. The flow of energy around the cloaked region is visualized.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε r = ε ϕ = ( r 2 r 2 r 1 ) 2 ( r r 1 r ) 2 ,

Metrics