Abstract

A photonic vector modulator architecture for generating pure quadrature amplitude modulation (QAM) signals is presented. An electrical quadrature-modulated signal at microwave-millimeter-wave frequencies is generated from its corresponding baseband in-phase (I) and quadrature (Q) components. In the proposed scheme, no electrical devices apart from the electrical tone oscillator are needed in the generation process. In addition, the purity of the generated signal is increased, and the hardware requirements are reduced when compared with previously proposed architectures so a highly compact low-cost architecture can be implemented. A pure 1.25Gbits 4-QAM signal has been experimentally generated at a 42GHz carrier frequency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hirata, M. Harada, and T. Nagatsuma, J. Lightwave Technol. 21, 2145 (2003).
    [CrossRef]
  2. A. Wiberg, P. Perez-Milan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005).
    [CrossRef]
  3. W. D. Jemison, A. J. Kreuzberger, and E. Funk, IEEE Microw. Wirel. Compon. Lett. 12, 125 (2002).
    [CrossRef]
  4. P. Candelas, J. M. Fuster, J. Martí, and J. C. Roig, J. Lightwave Technol. 21, 496 (2003).
    [CrossRef]
  5. M. A. Piqueras, B. Vidal, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 17, 1947 (2005).
    [CrossRef]
  6. R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, J. Lightwave Technol. 25, 3350 (2007).
    [CrossRef]
  7. R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, in Proceedings of European Conference on Optical Communications 2007 (VDE Verlag, 2007), paper Tu5.4.7.

2007 (1)

2005 (2)

A. Wiberg, P. Perez-Milan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005).
[CrossRef]

M. A. Piqueras, B. Vidal, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 17, 1947 (2005).
[CrossRef]

2003 (2)

2002 (1)

W. D. Jemison, A. J. Kreuzberger, and E. Funk, IEEE Microw. Wirel. Compon. Lett. 12, 125 (2002).
[CrossRef]

Andrekson, P. A.

A. Wiberg, P. Perez-Milan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005).
[CrossRef]

Andres, M. V.

A. Wiberg, P. Perez-Milan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005).
[CrossRef]

Candelas, P.

Corral, J. L.

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, J. Lightwave Technol. 25, 3350 (2007).
[CrossRef]

M. A. Piqueras, B. Vidal, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 17, 1947 (2005).
[CrossRef]

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, in Proceedings of European Conference on Optical Communications 2007 (VDE Verlag, 2007), paper Tu5.4.7.

Funk, E.

W. D. Jemison, A. J. Kreuzberger, and E. Funk, IEEE Microw. Wirel. Compon. Lett. 12, 125 (2002).
[CrossRef]

Fuster, J. M.

Harada, M.

Hedekvist, P. O.

A. Wiberg, P. Perez-Milan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005).
[CrossRef]

Hirata, A.

Jemison, W. D.

W. D. Jemison, A. J. Kreuzberger, and E. Funk, IEEE Microw. Wirel. Compon. Lett. 12, 125 (2002).
[CrossRef]

Kreuzberger, A. J.

W. D. Jemison, A. J. Kreuzberger, and E. Funk, IEEE Microw. Wirel. Compon. Lett. 12, 125 (2002).
[CrossRef]

Marti, J.

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, J. Lightwave Technol. 25, 3350 (2007).
[CrossRef]

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, in Proceedings of European Conference on Optical Communications 2007 (VDE Verlag, 2007), paper Tu5.4.7.

Martí, J.

M. A. Piqueras, B. Vidal, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 17, 1947 (2005).
[CrossRef]

P. Candelas, J. M. Fuster, J. Martí, and J. C. Roig, J. Lightwave Technol. 21, 496 (2003).
[CrossRef]

Nagatsuma, T.

Perez-Milan, P.

A. Wiberg, P. Perez-Milan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005).
[CrossRef]

Piqueras, M. A.

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, J. Lightwave Technol. 25, 3350 (2007).
[CrossRef]

M. A. Piqueras, B. Vidal, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 17, 1947 (2005).
[CrossRef]

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, in Proceedings of European Conference on Optical Communications 2007 (VDE Verlag, 2007), paper Tu5.4.7.

Polo, V.

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, J. Lightwave Technol. 25, 3350 (2007).
[CrossRef]

M. A. Piqueras, B. Vidal, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 17, 1947 (2005).
[CrossRef]

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, in Proceedings of European Conference on Optical Communications 2007 (VDE Verlag, 2007), paper Tu5.4.7.

Roig, J. C.

Sambaraju, R.

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, J. Lightwave Technol. 25, 3350 (2007).
[CrossRef]

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, in Proceedings of European Conference on Optical Communications 2007 (VDE Verlag, 2007), paper Tu5.4.7.

Vidal, B.

M. A. Piqueras, B. Vidal, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 17, 1947 (2005).
[CrossRef]

Wiberg, A.

A. Wiberg, P. Perez-Milan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

W. D. Jemison, A. J. Kreuzberger, and E. Funk, IEEE Microw. Wirel. Compon. Lett. 12, 125 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. A. Piqueras, B. Vidal, V. Polo, J. L. Corral, and J. Martí, IEEE Photon. Technol. Lett. 17, 1947 (2005).
[CrossRef]

A. Wiberg, P. Perez-Milan, M. V. Andres, P. A. Andrekson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005).
[CrossRef]

J. Lightwave Technol. (3)

Other (1)

R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, in Proceedings of European Conference on Optical Communications 2007 (VDE Verlag, 2007), paper Tu5.4.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PVM architecture for pure electrical QAM generation. Abbreviations are defined in text.

Fig. 2
Fig. 2

Electrical spectrum at the photodiode output in the PVM scheme from Fig. 1 when the optical source λ 3 is (a) off and (b) on, corresponding to a 1.25 Gb s 4-QAM signal at a 42 GHz electrical carrier.

Fig. 3
Fig. 3

Measurement setup to electrically analyze the quality of the QAM modulation generated by the PVM. Abbreviations are defined in text.

Fig. 4
Fig. 4

Eye diagram for the 0.625 Gbit s data signals corresponding to the electrically demodulated (a) in-phase and (b) quadrature components of the 1.25 Gbit s 4-QAM signal generated at 42 GHz with the PVM shown in Fig. 1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i p d - LO ( t ) R L opt 2 J 1 ( m LO ) J 0 ( m LO ) { P 3 cos ( ω LO t Δ τ 31 Δ τ 21 π 2 ) + P 2 cos ( ω LO t π 4 ) + η [ x I ( t ) cos ( ω LO t ) + x Q ( t ) cos ( ω LO t π 2 ) ] } ,

Metrics