Abstract

Continuous-wave and Q-switched lasing from a Tm3+Ho3+ codoped tellurite fiber is reported. An Yb3+Er3+-doped silica fiber laser operating at 1.6μm was used as an in-band pump source, exciting the Tm3+ ions into the F43 level. Energy is then nonradiatively transferred to the upper laser level, the I75 state of Ho3+. The laser transition is from the I75 level to the I85 level, and the resulting emission is at 2.1μm. For continuous wave operation, the slope efficiency was 62% and the threshold 0.1W; the maximum output demonstrated was 0.16W. Mechanical Q switching resulted in a pulse of 0.65μJ energy and 160ns duration at a repetition rate of 19.4kHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A.Krier, ed., Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 615-631.
  2. A. Jha, S. Shen, and M. Naftaly, Phys. Rev. B 62, 6215 (2000).
    [CrossRef]
  3. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, Opt. Lett. 33, 402 (2008).
    [CrossRef] [PubMed]
  4. L. Huang, S. Shen, and A. Jha, J. Non-Cryst. Solids 345-346, 349 (2004).
    [CrossRef]
  5. J. Wang, E. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
    [CrossRef]
  6. S. Jackson and T. King, Opt. Commun. 172, 271 (1999).
    [CrossRef]
  7. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2μmTm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci.: Mater. Electron. (to be published).
  8. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, Opt. Express 15, 6546 (2007).
    [CrossRef] [PubMed]
  9. M. Pollnau and S. Jackson, “Mid-infrared fiber lasers,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 219-253.
  10. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999), pp. 474-475.
  11. S. D. Jackson, Proc. SPIE 6801, 680104 (2008).
    [CrossRef]
  12. S. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 3349 (2007).
    [CrossRef] [PubMed]

2008

2007

2004

L. Huang, S. Shen, and A. Jha, J. Non-Cryst. Solids 345-346, 349 (2004).
[CrossRef]

2000

A. Jha, S. Shen, and M. Naftaly, Phys. Rev. B 62, 6215 (2000).
[CrossRef]

1999

S. Jackson and T. King, Opt. Commun. 172, 271 (1999).
[CrossRef]

1994

J. Wang, E. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

Binks, D.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, Opt. Lett. 33, 402 (2008).
[CrossRef] [PubMed]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, Opt. Express 15, 6546 (2007).
[CrossRef] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2μmTm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci.: Mater. Electron. (to be published).

Bugge, F.

Erbert, G.

Huang, L.

L. Huang, S. Shen, and A. Jha, J. Non-Cryst. Solids 345-346, 349 (2004).
[CrossRef]

Jackson, S.

S. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 3349 (2007).
[CrossRef] [PubMed]

S. Jackson and T. King, Opt. Commun. 172, 271 (1999).
[CrossRef]

M. Pollnau and S. Jackson, “Mid-infrared fiber lasers,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 219-253.

Jackson, S. D.

S. D. Jackson, Proc. SPIE 6801, 680104 (2008).
[CrossRef]

Jha, A.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, Opt. Lett. 33, 402 (2008).
[CrossRef] [PubMed]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, Opt. Express 15, 6546 (2007).
[CrossRef] [PubMed]

L. Huang, S. Shen, and A. Jha, J. Non-Cryst. Solids 345-346, 349 (2004).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, Phys. Rev. B 62, 6215 (2000).
[CrossRef]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2μmTm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci.: Mater. Electron. (to be published).

King, T.

S. Jackson and T. King, Opt. Commun. 172, 271 (1999).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999), pp. 474-475.

Lousteau, J.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, Opt. Lett. 33, 402 (2008).
[CrossRef] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2μmTm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci.: Mater. Electron. (to be published).

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, Phys. Rev. B 62, 6215 (2000).
[CrossRef]

Pollnau, M.

M. Pollnau and S. Jackson, “Mid-infrared fiber lasers,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 219-253.

Richards, B.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, Opt. Lett. 33, 402 (2008).
[CrossRef] [PubMed]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, Opt. Express 15, 6546 (2007).
[CrossRef] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2μmTm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci.: Mater. Electron. (to be published).

Shen, S.

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, Opt. Express 15, 6546 (2007).
[CrossRef] [PubMed]

L. Huang, S. Shen, and A. Jha, J. Non-Cryst. Solids 345-346, 349 (2004).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, Phys. Rev. B 62, 6215 (2000).
[CrossRef]

Snitzer, E.

J. Wang, E. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

Tsang, Y.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, Opt. Lett. 33, 402 (2008).
[CrossRef] [PubMed]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, Opt. Express 15, 6546 (2007).
[CrossRef] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2μmTm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci.: Mater. Electron. (to be published).

Vogel, E.

J. Wang, E. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

Wang, J.

J. Wang, E. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

J. Mater. Sci.: Mater. Electron.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2μmTm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci.: Mater. Electron. (to be published).

J. Non-Cryst. Solids

L. Huang, S. Shen, and A. Jha, J. Non-Cryst. Solids 345-346, 349 (2004).
[CrossRef]

Opt. Commun.

S. Jackson and T. King, Opt. Commun. 172, 271 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

J. Wang, E. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

Phys. Rev. B

A. Jha, S. Shen, and M. Naftaly, Phys. Rev. B 62, 6215 (2000).
[CrossRef]

Proc. SPIE

S. D. Jackson, Proc. SPIE 6801, 680104 (2008).
[CrossRef]

Other

A.Krier, ed., Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 615-631.

M. Pollnau and S. Jackson, “Mid-infrared fiber lasers,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), pp. 219-253.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer, 1999), pp. 474-475.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption coefficient spectrum for an Yb 3 + ( 2.0 wt. % ) / Tm 3 + ( 1.0 wt. % ) / Ho 3 + ( 0.5 wt. % ) -doped TZN bulk glass. The inset is the partial energy level diagram of Tm 3 + and Ho 3 + showing the bottom two energy levels and the associated pump and lasing transitions.

Fig. 2
Fig. 2

Output power of the 2.1 μ m laser with respect to launched pump power for a 76 cm long fiber and output end reflectances of 11%, 40%, and 80%. The inset shows a typical laser spectrum obtained with output end reflectance of 11%.

Fig. 3
Fig. 3

Effect of fiber length on slope efficiency and threshold for an output end reflectance of 11%.

Fig. 4
Fig. 4

Schematic of the experimental setup used for the Q-switched Tm 3 + Ho 3 + -doped tellurite fiber laser. Tellurite fiber length is equal to 79 cm (HR, high reflectance; HT, high transmittance).

Fig. 5
Fig. 5

Photodetector output showing Q-switched emission at the same rate as the mechanical modulation. Inset, close-up of the typical emission from a single cavity opening.

Metrics