Abstract

We present a low-loss dynamic waveform shaping technique for high-repetition-rate signals by independent phase and amplitude control of spectral lines in a continuous fiber. Our system employs uniform fiber Bragg gratings to separate the spectral lines and provides independent amplitude and phase control for each line via an in-line polarization controller and an in-line fiber stretcher, respectively. Several distinct waveforms are experimentally demonstrated by manipulating five spectral lines with a spectral resolution of 0.12nm and a temporal resolution of 17ps. Better temporal resolution can be achieved by increasing the bandwidth through additional spectral lines.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Fontana, A. Ameti, E. Richley, L. Beard, and D. Guy, in 2002 IEEE Conference on Ultra Wideband Systems and Technologies, 2002, Digest of Papers (2002), p. 129.
  2. J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
    [CrossRef]
  3. M. Shen and R. Minasian, IEEE Photon. Technol. Lett. 16, 1155 (2004).
    [CrossRef]
  4. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nature 8, 463 (2007).
    [CrossRef]
  5. J. Azaña, N. Berger, B. Levit, and B. Fischer, Opt. Lett. 30, 3228 (2005).
    [CrossRef] [PubMed]
  6. D. Kaplin and P. Tournois, in Ultrafast Optics IV: Selected Contributions to the 4th International Conference on Ultrafast Optics (Springer, 2004), p. 105.
  7. T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett Jr., IEEE Photon. Technol. Lett. 14, 1608 (2002).
    [CrossRef]
  8. J. Brennan III, D. LaBrake, P. Chou, and H. Haus, “Method and apparatus for arbitrary spectral shaping of an optical pulse,” U.S. patent 6,195,484 (February 27, 2001).
  9. A. Rundquist, A. Efimov, and D. H. Reitze, J. Opt. Soc. Am. B 19, 2468 (2002).
    [CrossRef]

2007

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nature 8, 463 (2007).
[CrossRef]

2005

2004

M. Shen and R. Minasian, IEEE Photon. Technol. Lett. 16, 1155 (2004).
[CrossRef]

2002

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett Jr., IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

A. Rundquist, A. Efimov, and D. H. Reitze, J. Opt. Soc. Am. B 19, 2468 (2002).
[CrossRef]

1995

J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
[CrossRef]

Abeles, J.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett Jr., IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

Ameti, A.

R. Fontana, A. Ameti, E. Richley, L. Beard, and D. Guy, in 2002 IEEE Conference on Ultra Wideband Systems and Technologies, 2002, Digest of Papers (2002), p. 129.

Azaña, J.

Beard, L.

R. Fontana, A. Ameti, E. Richley, L. Beard, and D. Guy, in 2002 IEEE Conference on Ultra Wideband Systems and Technologies, 2002, Digest of Papers (2002), p. 129.

Berger, N.

Brennan, J.

J. Brennan III, D. LaBrake, P. Chou, and H. Haus, “Method and apparatus for arbitrary spectral shaping of an optical pulse,” U.S. patent 6,195,484 (February 27, 2001).

Capmany, J.

J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
[CrossRef]

Cascon, J.

J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
[CrossRef]

Chou, P.

J. Brennan III, D. LaBrake, P. Chou, and H. Haus, “Method and apparatus for arbitrary spectral shaping of an optical pulse,” U.S. patent 6,195,484 (February 27, 2001).

Delfyett, P.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett Jr., IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

DePriest, C.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett Jr., IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

Efimov, A.

Fischer, B.

Fontana, R.

R. Fontana, A. Ameti, E. Richley, L. Beard, and D. Guy, in 2002 IEEE Conference on Ultra Wideband Systems and Technologies, 2002, Digest of Papers (2002), p. 129.

Guy, D.

R. Fontana, A. Ameti, E. Richley, L. Beard, and D. Guy, in 2002 IEEE Conference on Ultra Wideband Systems and Technologies, 2002, Digest of Papers (2002), p. 129.

Haus, H.

J. Brennan III, D. LaBrake, P. Chou, and H. Haus, “Method and apparatus for arbitrary spectral shaping of an optical pulse,” U.S. patent 6,195,484 (February 27, 2001).

Huang, C. B.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nature 8, 463 (2007).
[CrossRef]

Jiang, Z.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nature 8, 463 (2007).
[CrossRef]

Kaplin, D.

D. Kaplin and P. Tournois, in Ultrafast Optics IV: Selected Contributions to the 4th International Conference on Ultrafast Optics (Springer, 2004), p. 105.

LaBrake, D.

J. Brennan III, D. LaBrake, P. Chou, and H. Haus, “Method and apparatus for arbitrary spectral shaping of an optical pulse,” U.S. patent 6,195,484 (February 27, 2001).

Leaird, D. E.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nature 8, 463 (2007).
[CrossRef]

Levit, B.

Marti, J.

J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
[CrossRef]

Martin, J.

J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
[CrossRef]

Minasian, R.

M. Shen and R. Minasian, IEEE Photon. Technol. Lett. 16, 1155 (2004).
[CrossRef]

Pastor, D.

J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
[CrossRef]

Reitze, D. H.

Richley, E.

R. Fontana, A. Ameti, E. Richley, L. Beard, and D. Guy, in 2002 IEEE Conference on Ultra Wideband Systems and Technologies, 2002, Digest of Papers (2002), p. 129.

Rundquist, A.

Sales, S.

J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
[CrossRef]

Shen, M.

M. Shen and R. Minasian, IEEE Photon. Technol. Lett. 16, 1155 (2004).
[CrossRef]

Tournois, P.

D. Kaplin and P. Tournois, in Ultrafast Optics IV: Selected Contributions to the 4th International Conference on Ultrafast Optics (Springer, 2004), p. 105.

Turpin, T.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett Jr., IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

Weiner, A. M.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nature 8, 463 (2007).
[CrossRef]

Yilmaz, T.

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett Jr., IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Shen and R. Minasian, IEEE Photon. Technol. Lett. 16, 1155 (2004).
[CrossRef]

T. Yilmaz, C. DePriest, T. Turpin, J. Abeles, and P. Delfyett Jr., IEEE Photon. Technol. Lett. 14, 1608 (2002).
[CrossRef]

J. Lightwave Technol.

J. Capmany, J. Cascon, J. Martin, S. Sales, D. Pastor, and J. Marti, J. Lightwave Technol. 13, 2003 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Nature

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, Nature 8, 463 (2007).
[CrossRef]

Opt. Lett.

Other

J. Brennan III, D. LaBrake, P. Chou, and H. Haus, “Method and apparatus for arbitrary spectral shaping of an optical pulse,” U.S. patent 6,195,484 (February 27, 2001).

D. Kaplin and P. Tournois, in Ultrafast Optics IV: Selected Contributions to the 4th International Conference on Ultrafast Optics (Springer, 2004), p. 105.

R. Fontana, A. Ameti, E. Richley, L. Beard, and D. Guy, in 2002 IEEE Conference on Ultra Wideband Systems and Technologies, 2002, Digest of Papers (2002), p. 129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

All-fiber spectral line-by-line pulse shaping system incorporating FBGs, polarization controllers, and fiber stretchers. Plots A, B, and C depict the signal spectra at points A, B, and C of the system, respectively. The spectral lines of the signal ( λ 1 , λ 2 , , λ n ) match the central wavelengths of the FBGs ( FBG 1 , FBG 2 , , FBG n ) .

Fig. 2
Fig. 2

(a) Ideal spectral response of a shaping system with a three-FBG array, (b) spectral response of a fabricated five-FBG array (solid curve), and the matching input spectrum (dotted curve).

Fig. 3
Fig. 3

Upper, experimental and simulated waveforms generated from a five-line all-fiber O-AWG system showing independent control of amplitude and phase. Lower, corresponding spectral amplitudes (measured) and phase (recovered from the G–S algorithm).

Fig. 4
Fig. 4

Sample experimental temporal waveforms generated from a five-line all-fiber O-AWG system. The insets show the measured spectral amplitudes. (a) Shape close to a sawtooth form. (b) Near flat-top shape.

Fig. 5
Fig. 5

Scope persistence trace of the temporal waveforms generated from an enclosed three-line O-AWG system without gel insulation for 50 s (left) and those from an open O-AWG system with gel insulation for 10 min (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = m = m = a m e j m 2 π f t + j ϕ m e j ω 0 t ,

Metrics