Abstract

It is demonstrated that the superprism effect is greatly enhanced in the configuration of a symmetrical metal-cladding waveguide owing to the strong dispersion effect of ultrahigh-order modes. The experimental result shows that a notable spatial displacement of the reflected beam as large as 0.9mm is achieved within a variation of 0.15nm in wavelength.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, Opt. Lett. 25, 1502 (2000).
    [CrossRef]
  2. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
    [CrossRef]
  3. T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
    [CrossRef]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, J. Lightwave Technol. 17, 2032 (1999).
    [CrossRef]
  5. M. Gerken and D. A. B. Miller, IEEE Photon. Technol. Lett. 15, 1097 (2003).
    [CrossRef]
  6. M. Gerken and D. A. B. Miller, Appl. Opt. 42, 1330 (2003).
    [CrossRef] [PubMed]
  7. S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, Opt. Lett. 21, 1771 (1996).
    [CrossRef] [PubMed]
  8. C. Luo, M. Soljačić, and J. D. Joannopoulos, Opt. Lett. 29, 745 (2004).
    [CrossRef] [PubMed]
  9. X. Sun, P. Gu, M. Li, X. Liu, D. Wang, and J. Zhang, Opt. Express 14, 8470 (2006).
    [CrossRef] [PubMed]
  10. X. Liu, X. Sun, and P. Gu, Opt. Lett. 32, 2321 (2007).
    [CrossRef] [PubMed]
  11. H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).
    [CrossRef]
  12. H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
    [CrossRef]
  13. X. Liu, Z. Cao, P. Zhu, and Q. Shen, Opt. Express 14, 3588 (2006).
    [CrossRef] [PubMed]
  14. C. W. Hsue and T. Tamir, J. Opt. Soc. Am. A 2, 978 (1985).
    [CrossRef]
  15. C.-F. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
    [CrossRef]
  16. H. Gilles, S. Girard, and J. Hamel, Opt. Lett. 27, 1421 (2002).
    [CrossRef]
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, 1988).

2007 (1)

2006 (2)

2004 (3)

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

C.-F. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
[CrossRef]

C. Luo, M. Soljačić, and J. D. Joannopoulos, Opt. Lett. 29, 745 (2004).
[CrossRef] [PubMed]

2003 (3)

H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).
[CrossRef]

M. Gerken and D. A. B. Miller, IEEE Photon. Technol. Lett. 15, 1097 (2003).
[CrossRef]

M. Gerken and D. A. B. Miller, Appl. Opt. 42, 1330 (2003).
[CrossRef] [PubMed]

2002 (3)

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

H. Gilles, S. Girard, and J. Hamel, Opt. Lett. 27, 1421 (2002).
[CrossRef]

2000 (1)

1999 (1)

1996 (1)

1985 (1)

Baba, T.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Cao, Z.

X. Liu, Z. Cao, P. Zhu, and Q. Shen, Opt. Express 14, 3588 (2006).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).
[CrossRef]

Gerken, M.

Gilles, H.

Girard, S.

Gu, P.

Hamel, J.

Harris, J. S.

Hietala, V. M.

Hsue, C. W.

Joannopoulos, J. D.

Jones, E. D.

Karle, T.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Kawakami, S.

Kawashima, T.

Kosaka, H.

Krauss, T. F.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Li, C.-F.

C.-F. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
[CrossRef]

Li, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).
[CrossRef]

Li, M.

Lin, C.-C.

Lin, S.-Y.

Liu, X.

Lu, H.

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).
[CrossRef]

Luo, C.

Mazilu, M.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Miller, D. A. B.

Nakamura, M.

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

Nelson, B. E.

Notomi, M.

Piestun, R.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, 1988).

Sato, T.

Shen, Q.

X. Liu, Z. Cao, P. Zhu, and Q. Shen, Opt. Express 14, 3588 (2006).
[CrossRef] [PubMed]

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).
[CrossRef]

Soljacic, M.

Sun, X.

Tamamura, T.

Tamir, T.

Tomita, A.

Wang, D.

Wang, L.

Wang, Q.

C.-F. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
[CrossRef]

Wu, L.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

Zhang, J.

Zhu, P.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Li, Z. Cao, H. Lu, and Q. Shen, Appl. Phys. Lett. 83, 2757 (2003).
[CrossRef]

H. Lu, Z. Cao, H. Li, and Q. Shen, Appl. Phys. Lett. 85, 4579 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, IEEE J. Quantum Electron. 38, 915 (2002).
[CrossRef]

T. Baba and M. Nakamura, IEEE J. Quantum Electron. 38, 909 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Gerken and D. A. B. Miller, IEEE Photon. Technol. Lett. 15, 1097 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. E (1)

C.-F. Li and Q. Wang, Phys. Rev. E 69, 055601 (2004).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Superprism effect in the SMCW structure.

Fig. 2
Fig. 2

Field distributions of the incident and reflected beams on the SMCW surface. The parameters are as follows: ε 0 = 2.25 , ε 1 = 28 + 1.8 i , ε 2 = 1 , d 1 = 22 nm , d 2 = 250 nm , h = 0.5 mm , θ = 4.16 ° , and the waist radius is 800 μ m .

Fig. 3
Fig. 3

Experimental setup for the measurement of the superprism effect in the SMCW.

Fig. 4
Fig. 4

Theoretical and experimental reflected beam displacements ( S ) with respect to the light wavelength.

Fig. 5
Fig. 5

Tunings of the working wavelength region. The curves with different parameters: (a) θ = 4.16 ° , h = 0.5 mm ; (b) θ = 4.21 ° , h = 0.5 mm ; and (c) θ = 4.16 ° , h = 0.5 mm + 80 nm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

κ h = m π + 2 arctan ( ρ α κ ) ,
ρ = { 1 , TE modes ε 2 ε 1 , TM modes ,
d N d λ = ε 2 N 2 N λ .
{ d κ d λ = 2 π ( ε 2 N 2 ) 1 2 λ 2 2 π N λ ( ε 2 N 2 ) 1 2 d N d λ , (3) d β d λ = 2 π N λ 2 + 2 π λ d N d λ . (4)
{ d κ d λ = 0 , (5) d β d λ = 2 π ε 2 λ 2 N . (6)

Metrics