Abstract

We developed an interferometric microscopy technique, referred to as Jones phase microscopy, capable of extracting the spatially resolved Jones polarization matrix associated with transparent and anisotropic samples. This is a generalization of quantitative phase imaging, which is recovered from one diagonal element of the measured matrix. The principle of the technique is demonstrated with measurements of a liquid crystal spatial light modulator and the potential for live cell imaging with experiments on live neurons in culture.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens

Taeseok Daniel Yang, Kwanjun Park, Yong Guk Kang, Kyoung J. Lee, Beop-Min Kim, and Youngwoon Choi
Opt. Express 24(25) 29302-29311 (2016)

Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix

Youngchan Kim, Joonwoo Jeong, Jaeduck Jang, Mahn Won Kim, and YongKeun Park
Opt. Express 20(9) 9948-9955 (2012)

Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry

Sherazade Aknoun, Pierre Bon, Julien Savatier, Benoit Wattellier, and Serge Monneret
Opt. Express 23(12) 16383-16406 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription