Abstract

Overloaded phase codes for volume holographic data storage are introduced. In contrast to any previous phase-code design, overloaded phase codes enable multiplexing of a number of data pages that exceeds the number of utilized reference beams. In this way the achievable data capacity can be augmented. Overloaded codes are generated by extending multilevel phase codes based on the discrete Fourier transform. We demonstrate multiplexing of 70 analog pages by means of 64 reference beams. The analysis of reconstructed digital data pages suggests that a capacity gain of up to 15% is reasonable.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage (Springer, 2000).
  2. L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
    [CrossRef]
  3. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
    [CrossRef]
  4. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Appl. Opt. 31, 5700 (1992).
    [CrossRef] [PubMed]
  5. K. Curtis and D. Psaltis, J. Opt. Soc. Am. A 10, 2547 (1993).
    [CrossRef]
  6. M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, and L. Hesselink, J. Opt. Soc. Am. B 11, 1820 (1994).
    [CrossRef]
  7. V. N. Morozov, Sov. J. Quantum Electron. 7, 961 (1977).
    [CrossRef]
  8. X. Zhang, G. Berger, M. Dietz, and C. Denz, Opt. Lett. 31, 1047 (2006).
    [CrossRef] [PubMed]
  9. X. Zhang, G. Berger, M. Dietz, and C. Denz, Appl. Phys. B 85, 575 (2006).
    [CrossRef]
  10. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, Opt. Lett. 16, 1774 (1991).
    [CrossRef] [PubMed]

2006 (2)

X. Zhang, G. Berger, M. Dietz, and C. Denz, Opt. Lett. 31, 1047 (2006).
[CrossRef] [PubMed]

X. Zhang, G. Berger, M. Dietz, and C. Denz, Appl. Phys. B 85, 575 (2006).
[CrossRef]

2004 (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

1991 (2)

1977 (1)

V. N. Morozov, Sov. J. Quantum Electron. 7, 961 (1977).
[CrossRef]

Aharoni, A.

Bashaw, M. C.

Berger, G.

X. Zhang, G. Berger, M. Dietz, and C. Denz, Opt. Lett. 31, 1047 (2006).
[CrossRef] [PubMed]

X. Zhang, G. Berger, M. Dietz, and C. Denz, Appl. Phys. B 85, 575 (2006).
[CrossRef]

Curtis, K.

Denz, C.

X. Zhang, G. Berger, M. Dietz, and C. Denz, Opt. Lett. 31, 1047 (2006).
[CrossRef] [PubMed]

X. Zhang, G. Berger, M. Dietz, and C. Denz, Appl. Phys. B 85, 575 (2006).
[CrossRef]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Appl. Opt. 31, 5700 (1992).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Dietz, M.

X. Zhang, G. Berger, M. Dietz, and C. Denz, Appl. Phys. B 85, 575 (2006).
[CrossRef]

X. Zhang, G. Berger, M. Dietz, and C. Denz, Opt. Lett. 31, 1047 (2006).
[CrossRef] [PubMed]

Fainman, Y.

Ford, J. E.

Heanue, J. F.

Hesselink, L.

Lee, S. H.

Ma, J.

Morozov, V. N.

V. N. Morozov, Sov. J. Quantum Electron. 7, 961 (1977).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
[CrossRef]

Pauliat, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Appl. Opt. 31, 5700 (1992).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Psaltis, D.

Roosen, G.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Appl. Opt. 31, 5700 (1992).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Sasaki, H.

Taketomi, Y.

Tschudi, T.

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Appl. Opt. 31, 5700 (1992).
[CrossRef] [PubMed]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Walkup, J. F.

Zhang, X.

X. Zhang, G. Berger, M. Dietz, and C. Denz, Opt. Lett. 31, 1047 (2006).
[CrossRef] [PubMed]

X. Zhang, G. Berger, M. Dietz, and C. Denz, Appl. Phys. B 85, 575 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

X. Zhang, G. Berger, M. Dietz, and C. Denz, Appl. Phys. B 85, 575 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, Opt. Commun. 85, 171 (1991).
[CrossRef]

Opt. Lett. (2)

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, Proc. IEEE 92, 1231 (2004).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. N. Morozov, Sov. J. Quantum Electron. 7, 961 (1977).
[CrossRef]

Other (1)

H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds., Holographic Data Storage (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SNR versus M and versus the capacity gain in percentages, when multiplexing M pages ( M [ 65 , , 83 ] ) using N = 64 reference beams.

Fig. 2
Fig. 2

Reconstructed analog data pages of a set of 70 pages that are recorded by means of 64 reference beams.

Fig. 3
Fig. 3

Channel histograms of data pages multiplexed by overloaded phase codes V 23 × 21 ( I norm =normalized intensity after block decoding).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

v k l = exp ( ( 1 ) p 2 π i ( k 1 ) ( l 1 ) M ) ,
φ k l = 2 π M [ ( i M 2 π ln ( v k l ) ) mod M ]
NSR n = 1 N 2 m k l l k if m = n v n k ( v m l ) * sinc ξ 2 ,
ξ = [ ( k l ) + λ x 2 2 F t ( l 2 k 2 ) + λ 3 8 t 3 ( l 2 k 2 ) 2 ] .
SNR n [ 1 N 2 m = 1 m n M k = 1 N exp ( 2 π i k m n M ) 2 ] 1
= N M N .

Metrics