Abstract

We present a three-dimensional (3D) imaging method employing linear increasing gain to encode flying time of photons into intensity information. This method obtains both the reflectivity and the depth of scene from only two two-dimensional (2D) images. High linear accuracy between the depth and the intensity information is independent of the laser pulse shape. We demonstrated <1m linear depth accuracies with two different kinds of laser pulse shape and a 3D scene reconstruction with supperresolution depth mapping when the targets are 8001100m away.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, Proc. SPIE 3707, 432 (1999).
    [CrossRef]
  2. R. L. Espinola, Opt. Express 15, 3816 (2007).
    [CrossRef] [PubMed]
  3. J. Busck and H. Heiselberg, Appl. Opt. 43, 4705 (2004).
    [CrossRef] [PubMed]
  4. P. Andersson, Opt. Eng. (Bellingham) 45, 034301 (2006).
    [CrossRef]
  5. J. F. Andersen, J. Busck, and H. Heiselberg, Appl. Opt. 45, 6198 (2006).
    [PubMed]
  6. M. Laurenzis, F. Christnacher, and D. Monnin, Opt. Lett. 32, 3146 (2007).
    [CrossRef] [PubMed]
  7. M. Kawakita, K. Iizuka, R. Iwama, K. Takizara, H. Kikuchi, and F. Stao, Opt. Express 12, 5336 (2004).
    [CrossRef] [PubMed]
  8. M. Kawakita, K. Iizuka, T. Aida, H. Kikuchi, H. Fujikake, J. Yonai, and K. Takizawa, Appl. Opt. 39, 3931 (2000).
    [CrossRef]
  9. I. P. Csorba, Appl. Opt. 19, 3863 (1980).
    [CrossRef] [PubMed]
  10. E. H. Eberhardt, Appl. Opt. 18, 1418 (1979).
    [CrossRef] [PubMed]

2007

2006

2004

2000

1999

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, Proc. SPIE 3707, 432 (1999).
[CrossRef]

1980

1979

Aida, T.

Andersen, J. F.

Andersson, P.

P. Andersson, Opt. Eng. (Bellingham) 45, 034301 (2006).
[CrossRef]

Bolander, G.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, Proc. SPIE 3707, 432 (1999).
[CrossRef]

Busck, J.

Christnacher, F.

Csorba, I. P.

Eberhardt, E. H.

Espinola, R. L.

Fujikake, H.

Groenwall, C. A.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, Proc. SPIE 3707, 432 (1999).
[CrossRef]

Heiselberg, H.

Iizuka, K.

Iwama, R.

Kawakita, M.

Kikuchi, H.

Laurenzis, M.

Letalick, D.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, Proc. SPIE 3707, 432 (1999).
[CrossRef]

Monnin, D.

Olsson, H.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, Proc. SPIE 3707, 432 (1999).
[CrossRef]

Stao, F.

Steinvall, O. K.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, Proc. SPIE 3707, 432 (1999).
[CrossRef]

Takizara, K.

Takizawa, K.

Yonai, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Gated viewing imaging has synchronization of light pulse and receiver gate 1. The linear increasing gain of receiver gate 2 encodes the flight time of photon.

Fig. 2
Fig. 2

Distances measured by Gaussian-shaped and rectangle-shaped pulses compared with real target distances.

Fig. 3
Fig. 3

Gated viewing images and corresponding 3D scene present as depth map: (a) gated viewing image with fixed gain, (b) gated viewing image with linear increasing gain, and (c) depth map.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E = γ z 2 exp ( δ ( z ) d z ) g ( t + 2 z c ) p ( t ) d t ,
g 1 ( t ) = G 1 Re c t [ ( t 2 z 0 c ) T ] ,
g 2 ( t ) = [ G 2 + k ( t 2 z c ) ] Re c t [ ( t 2 z 0 c ) T ] ,
g 1 ( t ) p ( t ) d t = G 1 p ( t ) d t ,
g 2 ( t ) p ( t ) d t = G 2 p ( t ) d t + k p ( t ) t d t .
z = z 0 + α ( E 2 E 1 β ) ,
α = c p 1 ( t ) d t 2 k p 2 ( t ) d t , β = G 2 p 2 ( t ) d t + k t p 2 ( t ) d t G 1 p 1 ( t ) d t .

Metrics