Abstract

By combining a Mach–Zehnder-modulator-based flat comb generator (MZ-FCG) with a dispersion-flattened dispersion-decreasing fiber, femtosecond pulses have been generated from a cw light. Near-Fourier-transform-limit picosecond pulses generated from the MZ-FCG were compressed into femtosecond order by pulse compression. Our system enables flexible tuning of the repetition rate and pulse width, because those depend on the driving signal of the MZ-FCG. Pulse trains of 200fs width were continuously and stably generated without mode hopping, with a repetition rate range from 5 to 17GHz. Our system consists of a modulator and compression fiber; thus, the configuration is simpler and more stable.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, (Springer1998).
  2. S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, Opt. Lett. 19, 834 (1994).
    [CrossRef] [PubMed]
  3. M. Nakazawa, E. Yoshida, and K. Tamura, Electron. Lett. 33, 1318 (1997).
    [CrossRef]
  4. K. R. Tamura and M. Nakazawa, Opt. Lett. 26, 762 (2001).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  6. K. Igarashi, M. Kishi, and M. Tsuchiya, Jpn. J. Appl. Phys., Part 1 40, 6426 (2001).
    [CrossRef]
  7. K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi, and S. Namiki, Electron. Lett. 41, 797 (2005).
    [CrossRef]
  8. T. Inoue, J. Hiroishi, T. Yagi, and Y. Mimura, Opt. Lett. 32, 1596 (2007).
    [CrossRef] [PubMed]
  9. T. Sakamoto, T. Kawanishi, M. Tsuchiya, and M. Izutsu, in 32nd European Conference on Optical Communication (ECOC2006) (IEEE, 2006), paper WE4.6.2.
  10. R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication Conference (OFC'07) (Optical Society of America, 2007), paper OWJ3.
  11. T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 32, 1515 (2007).
    [CrossRef] [PubMed]
  12. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, Opt. Lett. 33, 890 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (2)

2005 (1)

K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi, and S. Namiki, Electron. Lett. 41, 797 (2005).
[CrossRef]

2001 (2)

K. R. Tamura and M. Nakazawa, Opt. Lett. 26, 762 (2001).
[CrossRef]

K. Igarashi, M. Kishi, and M. Tsuchiya, Jpn. J. Appl. Phys., Part 1 40, 6426 (2001).
[CrossRef]

1997 (1)

M. Nakazawa, E. Yoshida, and K. Tamura, Electron. Lett. 33, 1318 (1997).
[CrossRef]

1994 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

Arahira, S.

Fontaine, N. K.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication Conference (OFC'07) (Optical Society of America, 2007), paper OWJ3.

Heritage, J. P.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication Conference (OFC'07) (Optical Society of America, 2007), paper OWJ3.

Hiroishi, J.

Igarashi, K.

K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi, and S. Namiki, Electron. Lett. 41, 797 (2005).
[CrossRef]

K. Igarashi, M. Kishi, and M. Tsuchiya, Jpn. J. Appl. Phys., Part 1 40, 6426 (2001).
[CrossRef]

Inoue, T.

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 32, 1515 (2007).
[CrossRef] [PubMed]

T. Sakamoto, T. Kawanishi, M. Tsuchiya, and M. Izutsu, in 32nd European Conference on Optical Communication (ECOC2006) (IEEE, 2006), paper WE4.6.2.

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, Opt. Lett. 33, 890 (2008).
[CrossRef] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 32, 1515 (2007).
[CrossRef] [PubMed]

T. Sakamoto, T. Kawanishi, M. Tsuchiya, and M. Izutsu, in 32nd European Conference on Optical Communication (ECOC2006) (IEEE, 2006), paper WE4.6.2.

Kishi, M.

K. Igarashi, M. Kishi, and M. Tsuchiya, Jpn. J. Appl. Phys., Part 1 40, 6426 (2001).
[CrossRef]

Kolner, B. H.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication Conference (OFC'07) (Optical Society of America, 2007), paper OWJ3.

Kunii, T.

Matsui, Y.

Mimura, Y.

Nakazawa, M.

K. R. Tamura and M. Nakazawa, Opt. Lett. 26, 762 (2001).
[CrossRef]

M. Nakazawa, E. Yoshida, and K. Tamura, Electron. Lett. 33, 1318 (1997).
[CrossRef]

Namiki, S.

K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi, and S. Namiki, Electron. Lett. 41, 797 (2005).
[CrossRef]

Ogawa, Y.

Oshiba, S.

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, Opt. Lett. 33, 890 (2008).
[CrossRef] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 32, 1515 (2007).
[CrossRef] [PubMed]

T. Sakamoto, T. Kawanishi, M. Tsuchiya, and M. Izutsu, in 32nd European Conference on Optical Communication (ECOC2006) (IEEE, 2006), paper WE4.6.2.

Scott, R. P.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication Conference (OFC'07) (Optical Society of America, 2007), paper OWJ3.

Shah, J.

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, (Springer1998).

Takahashi, M.

K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi, and S. Namiki, Electron. Lett. 41, 797 (2005).
[CrossRef]

Tamura, K.

M. Nakazawa, E. Yoshida, and K. Tamura, Electron. Lett. 33, 1318 (1997).
[CrossRef]

Tamura, K. R.

Tobioka, H.

K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi, and S. Namiki, Electron. Lett. 41, 797 (2005).
[CrossRef]

Tsuchiya, M.

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, Opt. Lett. 33, 890 (2008).
[CrossRef] [PubMed]

K. Igarashi, M. Kishi, and M. Tsuchiya, Jpn. J. Appl. Phys., Part 1 40, 6426 (2001).
[CrossRef]

T. Sakamoto, T. Kawanishi, M. Tsuchiya, and M. Izutsu, in 32nd European Conference on Optical Communication (ECOC2006) (IEEE, 2006), paper WE4.6.2.

Yagi, T.

T. Inoue, J. Hiroishi, T. Yagi, and Y. Mimura, Opt. Lett. 32, 1596 (2007).
[CrossRef] [PubMed]

K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi, and S. Namiki, Electron. Lett. 41, 797 (2005).
[CrossRef]

Yoo, S. J. B.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication Conference (OFC'07) (Optical Society of America, 2007), paper OWJ3.

Yoshida, E.

M. Nakazawa, E. Yoshida, and K. Tamura, Electron. Lett. 33, 1318 (1997).
[CrossRef]

Electron. Lett. (2)

M. Nakazawa, E. Yoshida, and K. Tamura, Electron. Lett. 33, 1318 (1997).
[CrossRef]

K. Igarashi, H. Tobioka, M. Takahashi, T. Yagi, and S. Namiki, Electron. Lett. 41, 797 (2005).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

K. Igarashi, M. Kishi, and M. Tsuchiya, Jpn. J. Appl. Phys., Part 1 40, 6426 (2001).
[CrossRef]

Opt. Lett. (5)

Other (4)

J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, (Springer1998).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2006).

T. Sakamoto, T. Kawanishi, M. Tsuchiya, and M. Izutsu, in 32nd European Conference on Optical Communication (ECOC2006) (IEEE, 2006), paper WE4.6.2.

R. P. Scott, N. K. Fontaine, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, in Optical Fiber Communication Conference (OFC'07) (Optical Society of America, 2007), paper OWJ3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for femtosecond pulse generation. PC, polarization controller; ATT, attenuator; ϕ, phase shifter.

Fig. 2
Fig. 2

Autocorrelation trace of a picosecond pulse and (b) an optical comb spectrum generated at f = 10 GHz .

Fig. 3
Fig. 3

Compressed femtosecond pulse: (a) autocorrelation trace and (b) optical spectrum.

Fig. 4
Fig. 4

Modulation frequency dependence of pulsewidth of (a) seed and (b) compressed pulses, and (c) compression ratio and time-bandwidth product ( Δ ν Δ τ ) . In (c) closed squares and open circles show the compressed ratio and the time-bandwidth product, respectively. Lengths of the SMF in the rf frequency of 5 and 17 GHz were 3.0 and 0.7 km (dispersion values of 51 and 11.9 ps nm ), respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ A ± Δ θ = π 2 ,

Metrics