Abstract

A Feussner-type terahertz polarizer with a nematic liquid crystal (NLC) layer between two fused-silica prisms is demonstrated. The polarization factor and extinction ratio of the NLC-based terahertz polarizer can exceed 0.99 and 105, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, Nat. Photonics 1, 97 (2007) and references therein.
    [CrossRef]
  2. P. F. Goldsmith, Proc. IEEE 80, 1729 (1992).
    [CrossRef]
  3. A. E. Costley, K. H. Hursey, G. F. Neill, and J. M. Wald, J. Opt. Soc. Am. 67, 979 (1977).
    [CrossRef]
  4. V. B. Yurchenko and E. V. Yurchenko, Millimeter and Submillimeter Waves '07 Symposium Proceedings (IEEE, 2007).
  5. T. Kondo, T. Nagashima, and M. Hangyo, Jpn. J. Appl. Phys., Part 1 42, L373 (2003).
    [CrossRef]
  6. K. Feussner, Zeitschr. Instrum. 4, 41 (1884), summarized by P. R. Sleeman, Nature 29, 514 (1884).
  7. T. Yamaguti, J. Phys. Soc. Jpn. 10, 219 (1955).
    [CrossRef]
  8. J. C. Martínez-Antón and E. Bernabeuj, Appl. Phys. Lett. 80, 1692 (2002).
    [CrossRef]
  9. T.-R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, Appl. Opt. 42, 2372 (2003).
    [CrossRef] [PubMed]
  10. R.-P. Pan, T.-R. Tsai, C.-Y. Chen, C.-H. Wang, and C.-L. Pan, Mol. Cryst. Liq. Cryst. 409, 137 (2004).
    [CrossRef]
  11. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, Opt. Express 12, 2625 (2004).
    [CrossRef] [PubMed]
  12. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006).
    [CrossRef]
  13. M. Oh-e, H. Yokoyama, M. Koeberg, E. Hendry, and M. Bonn, Opt. Express 14, 11433 (2006).
    [CrossRef] [PubMed]
  14. C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, Opt. Express 13, 3921 (2005).
    [CrossRef] [PubMed]
  15. E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998), Chap. 4.
  16. J. P. Auton, Appl. Opt. 6, 1023 (1967).
    [CrossRef] [PubMed]
  17. V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
    [CrossRef]

2007

M. Tonouchi, Nat. Photonics 1, 97 (2007) and references therein.
[CrossRef]

V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
[CrossRef]

2006

M. Oh-e, H. Yokoyama, M. Koeberg, E. Hendry, and M. Bonn, Opt. Express 14, 11433 (2006).
[CrossRef] [PubMed]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

2005

2004

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, Opt. Express 12, 2625 (2004).
[CrossRef] [PubMed]

R.-P. Pan, T.-R. Tsai, C.-Y. Chen, C.-H. Wang, and C.-L. Pan, Mol. Cryst. Liq. Cryst. 409, 137 (2004).
[CrossRef]

2003

T. Kondo, T. Nagashima, and M. Hangyo, Jpn. J. Appl. Phys., Part 1 42, L373 (2003).
[CrossRef]

T.-R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, Appl. Opt. 42, 2372 (2003).
[CrossRef] [PubMed]

2002

J. C. Martínez-Antón and E. Bernabeuj, Appl. Phys. Lett. 80, 1692 (2002).
[CrossRef]

1992

P. F. Goldsmith, Proc. IEEE 80, 1729 (1992).
[CrossRef]

1977

1967

1955

T. Yamaguti, J. Phys. Soc. Jpn. 10, 219 (1955).
[CrossRef]

1884

K. Feussner, Zeitschr. Instrum. 4, 41 (1884), summarized by P. R. Sleeman, Nature 29, 514 (1884).

Auton, J. P.

Bernabeuj, E.

J. C. Martínez-Antón and E. Bernabeuj, Appl. Phys. Lett. 80, 1692 (2002).
[CrossRef]

Bonn, M.

Chen, C.-Y.

Cherkassky, V. S.

V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
[CrossRef]

Costley, A. E.

Ewert, U.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Feussner, K.

K. Feussner, Zeitschr. Instrum. 4, 41 (1884), summarized by P. R. Sleeman, Nature 29, 514 (1884).

Goldsmith, P. F.

P. F. Goldsmith, Proc. IEEE 80, 1729 (1992).
[CrossRef]

Hangyo, M.

Hasek, T.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998), Chap. 4.

Hendry, E.

Hsieh, C.-F.

Hursey, K. H.

Knyazev, B. A.

V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
[CrossRef]

Koch, M.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Koeberg, M.

Kondo, T.

T. Kondo, T. Nagashima, and M. Hangyo, Jpn. J. Appl. Phys., Part 1 42, L373 (2003).
[CrossRef]

Kulipanov, G. N.

V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
[CrossRef]

Lin, Y.-F.

Martínez-Antón, J. C.

J. C. Martínez-Antón and E. Bernabeuj, Appl. Phys. Lett. 80, 1692 (2002).
[CrossRef]

Matveenko, A. N.

V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
[CrossRef]

Miyamaru, F.

Nagashima, T.

T. Kondo, T. Nagashima, and M. Hangyo, Jpn. J. Appl. Phys., Part 1 42, L373 (2003).
[CrossRef]

Neill, G. F.

Oh-e, M.

Pan, C.-L.

Pan, R.-P.

Richter, H.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Rudych, P. D.

V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
[CrossRef]

Rutz, F.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Tanaka, M.

Tani, M.

Tonouchi, M.

M. Tonouchi, Nat. Photonics 1, 97 (2007) and references therein.
[CrossRef]

Tsai, T.-R.

R.-P. Pan, T.-R. Tsai, C.-Y. Chen, C.-H. Wang, and C.-L. Pan, Mol. Cryst. Liq. Cryst. 409, 137 (2004).
[CrossRef]

T.-R. Tsai, C.-Y. Chen, C.-L. Pan, R.-P. Pan, and X.-C. Zhang, Appl. Opt. 42, 2372 (2003).
[CrossRef] [PubMed]

Vinokurov, N. A.

V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
[CrossRef]

Wald, J. M.

Wang, C.-H.

R.-P. Pan, T.-R. Tsai, C.-Y. Chen, C.-H. Wang, and C.-L. Pan, Mol. Cryst. Liq. Cryst. 409, 137 (2004).
[CrossRef]

Yamaguti, T.

T. Yamaguti, J. Phys. Soc. Jpn. 10, 219 (1955).
[CrossRef]

Yokoyama, H.

Yurchenko, E. V.

V. B. Yurchenko and E. V. Yurchenko, Millimeter and Submillimeter Waves '07 Symposium Proceedings (IEEE, 2007).

Yurchenko, V. B.

V. B. Yurchenko and E. V. Yurchenko, Millimeter and Submillimeter Waves '07 Symposium Proceedings (IEEE, 2007).

Zhang, X.-C.

Appl. Opt.

Appl. Phys. Lett.

J. C. Martínez-Antón and E. Bernabeuj, Appl. Phys. Lett. 80, 1692 (2002).
[CrossRef]

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Int. J. Infrared Millim. Waves

V. S. Cherkassky, B. A. Knyazev, G. N. Kulipanov, A. N. Matveenko, P. D. Rudych, and N. A. Vinokurov, Int. J. Infrared Millim. Waves 28, 219 (2007).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Soc. Jpn.

T. Yamaguti, J. Phys. Soc. Jpn. 10, 219 (1955).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

T. Kondo, T. Nagashima, and M. Hangyo, Jpn. J. Appl. Phys., Part 1 42, L373 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst.

R.-P. Pan, T.-R. Tsai, C.-Y. Chen, C.-H. Wang, and C.-L. Pan, Mol. Cryst. Liq. Cryst. 409, 137 (2004).
[CrossRef]

Nat. Photonics

M. Tonouchi, Nat. Photonics 1, 97 (2007) and references therein.
[CrossRef]

Opt. Express

Proc. IEEE

P. F. Goldsmith, Proc. IEEE 80, 1729 (1992).
[CrossRef]

Zeitschr. Instrum.

K. Feussner, Zeitschr. Instrum. 4, 41 (1884), summarized by P. R. Sleeman, Nature 29, 514 (1884).

Other

V. B. Yurchenko and E. V. Yurchenko, Millimeter and Submillimeter Waves '07 Symposium Proceedings (IEEE, 2007).

E. Hecht, Optics, 3rd ed. (Addison-Wesley Longman, 1998), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of the THz Feussner polarizer with a LC layer. The dimensions of the device, l × w × h , are 22.3 mm × 15 mm × 15 mm . The polarization direction of the THz wave incident on the polarizer is along the y axis.

Fig. 2
Fig. 2

Normalized transmittance of three polarizers studied. The solid and open marks represent experimental data for e-ray and o-ray, respectively. The black circles, red squares, and blue triangles represent data for polarizers with 1.95-, 1.25-, and 0.75-mm-thick LC layers. The solid and dashed curves are the theoretical curves for e-ray and o-ray, respectively.

Fig. 3
Fig. 3

Polarization factors of THz LC polarizers. The black circles, red squares, and blue triangles represent the polarizer with 1.95-, 1.25-, and 0.75-mm-thick LC layers, respectively. The marks and curves are the experimental data and theoretically predicted polarization factors. The inset shows the normalized peak transmission of the THz wave propagated through the THz LC polarizer as a function of the rotation angle, ψ. The solid curve is the theoretical curve according to Malus’ law.

Fig. 4
Fig. 4

Calculated and measured extinction ratios of three THz LC polarizers. Black (solid), red (dashed), and blue (dotted) lines represent theoretical extinction ratios of the THz polarizer with 1.95-, 1.25-, and 0.75-mm-thick LC layers. Black circles, red squares, and blue triangles represent experimentally determined extinction ratio of THz polarizer with 1.95-, 1.25-, and 0.75-mm-thick LC layers.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T e ( f ) = T e e 4 π κ e f d c ,
T e = ( 4 n q n e cos φ cos θ r e ) 2 ( n q cos φ + n e cos θ r e ) 4 = 0.801
T o ( f ) = e 4 π κ o f d c e 2 α d ,
P = T e ( f ) T o ( f ) T e ( f ) + T o ( f ) ,
E = T o ( f ) T e ( f ) .

Metrics