Abstract

We demonstrate rapid fabrication of submicrometer-diameter pores in borosilicate glass using femtosecond laser machining and subsequent wet-etch techniques. This approach allows direct and repeatable fabrication of high-quality pores with diameters of 400800nm. Such small pores coupled with the desirable electrical and chemical properties of glass enable sensitive resistive-pulse analysis to determine the size and concentration of macromolecules and nanoparticles. Plasma-enhanced chemical vapor deposition allows further reduction of pore diameters to below 300nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
    [CrossRef] [PubMed]
  2. R. W. DeBlois and C. P. Bean, Rev. Sci. Instrum. 41, 909 (1970).
    [CrossRef]
  3. O. A. Saleh and L. L. Sohn, Rev. Sci. Instrum. 72, 4449 (2001).
    [CrossRef]
  4. R. W. DeBlois, E. E. Uzgiris, D. H. Cluxton, and H. M. Mazzone, Anal. Biochem. 90, 273 (1978).
    [CrossRef] [PubMed]
  5. L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature 398, 686 (1999).
    [CrossRef] [PubMed]
  6. J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Angew. Chem. Int. Ed. 45, 2281 (2006).
    [CrossRef]
  7. J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Small 2, 967 (2006).
    [CrossRef] [PubMed]
  8. J. D. Uram and M. Mayer, Biosens. Bioelectron. 22, 1556 (2007).
    [CrossRef]
  9. J. D. Uram, K. Ke, and M. Mayer, ACS Nano, DOI: 10.1021/nn/700322m (2008).
  10. H. Bayley and C. R. Martin, Chem. Rev. 100, 2575 (2000).
    [CrossRef]
  11. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
    [CrossRef] [PubMed]
  12. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
    [CrossRef]
  13. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
    [CrossRef]
  14. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Y. Jiang, Opt. Lett. 26, 1912 (2001).
    [CrossRef]
  15. R. An, Y. Li, Y. P. Dou, H. Yang, and Q. H. Gong, Opt. Express 13, 1855 (2005).
    [CrossRef] [PubMed]
  16. K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
    [CrossRef] [PubMed]
  17. Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
    [CrossRef]

2008 (1)

J. D. Uram, K. Ke, and M. Mayer, ACS Nano, DOI: 10.1021/nn/700322m (2008).

2007 (1)

J. D. Uram and M. Mayer, Biosens. Bioelectron. 22, 1556 (2007).
[CrossRef]

2006 (2)

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Angew. Chem. Int. Ed. 45, 2281 (2006).
[CrossRef]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Small 2, 967 (2006).
[CrossRef] [PubMed]

2005 (2)

2003 (2)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
[CrossRef]

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

2001 (3)

Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Y. Jiang, Opt. Lett. 26, 1912 (2001).
[CrossRef]

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
[CrossRef] [PubMed]

O. A. Saleh and L. L. Sohn, Rev. Sci. Instrum. 72, 4449 (2001).
[CrossRef]

2000 (1)

H. Bayley and C. R. Martin, Chem. Rev. 100, 2575 (2000).
[CrossRef]

1999 (2)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
[CrossRef]

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature 398, 686 (1999).
[CrossRef] [PubMed]

1996 (1)

1978 (1)

R. W. DeBlois, E. E. Uzgiris, D. H. Cluxton, and H. M. Mazzone, Anal. Biochem. 90, 273 (1978).
[CrossRef] [PubMed]

1970 (1)

R. W. DeBlois and C. P. Bean, Rev. Sci. Instrum. 41, 909 (1970).
[CrossRef]

An, R.

Apel, P.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Aziz, M. J.

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
[CrossRef] [PubMed]

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
[CrossRef]

Baur, D.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Bayley, H.

H. Bayley and C. R. Martin, Chem. Rev. 100, 2575 (2000).
[CrossRef]

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature 398, 686 (1999).
[CrossRef] [PubMed]

Bean, C. P.

R. W. DeBlois and C. P. Bean, Rev. Sci. Instrum. 41, 909 (1970).
[CrossRef]

Braha, O.

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature 398, 686 (1999).
[CrossRef] [PubMed]

Branton, D.

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
[CrossRef] [PubMed]

Callan, J. P.

Cheley, S.

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature 398, 686 (1999).
[CrossRef] [PubMed]

Cluxton, D. H.

R. W. DeBlois, E. E. Uzgiris, D. H. Cluxton, and H. M. Mazzone, Anal. Biochem. 90, 273 (1978).
[CrossRef] [PubMed]

Conlan, S.

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature 398, 686 (1999).
[CrossRef] [PubMed]

DeBlois, R. W.

R. W. DeBlois, E. E. Uzgiris, D. H. Cluxton, and H. M. Mazzone, Anal. Biochem. 90, 273 (1978).
[CrossRef] [PubMed]

R. W. DeBlois and C. P. Bean, Rev. Sci. Instrum. 41, 909 (1970).
[CrossRef]

Dobrev, D. D.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Dou, Y. P.

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
[CrossRef]

Finlay, R. J.

Glezer, E. N.

Golovchenko, J. A.

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
[CrossRef] [PubMed]

Gong, Q. H.

Gu, L.

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature 398, 686 (1999).
[CrossRef] [PubMed]

Hasselbrink, E. F.

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef] [PubMed]

Her, T. H.

Huang, L.

Hunt, A. J.

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Angew. Chem. Int. Ed. 45, 2281 (2006).
[CrossRef]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Small 2, 967 (2006).
[CrossRef] [PubMed]

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef] [PubMed]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
[CrossRef]

Itoh, K.

Jiang, Y. Y.

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
[CrossRef]

Ke, K.

J. D. Uram, K. Ke, and M. Mayer, ACS Nano, DOI: 10.1021/nn/700322m (2008).

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Small 2, 967 (2006).
[CrossRef] [PubMed]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Angew. Chem. Int. Ed. 45, 2281 (2006).
[CrossRef]

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef] [PubMed]

Korchev, Y. E.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Kuroda, D.

Li, J.

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
[CrossRef] [PubMed]

Li, Y.

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
[CrossRef]

Martin, C. R.

H. Bayley and C. R. Martin, Chem. Rev. 100, 2575 (2000).
[CrossRef]

Mayer, M.

J. D. Uram, K. Ke, and M. Mayer, ACS Nano, DOI: 10.1021/nn/700322m (2008).

J. D. Uram and M. Mayer, Biosens. Bioelectron. 22, 1556 (2007).
[CrossRef]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Angew. Chem. Int. Ed. 45, 2281 (2006).
[CrossRef]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Small 2, 967 (2006).
[CrossRef] [PubMed]

Mazur, E.

Mazzone, H. M.

R. W. DeBlois, E. E. Uzgiris, D. H. Cluxton, and H. M. Mazzone, Anal. Biochem. 90, 273 (1978).
[CrossRef] [PubMed]

McMullan, C.

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
[CrossRef] [PubMed]

Meyhofer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
[CrossRef]

Milosavljevic, M.

Mourou, G.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
[CrossRef]

Neumann, R.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Nishii, J.

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
[CrossRef]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
[CrossRef]

Saleh, O. A.

O. A. Saleh and L. L. Sohn, Rev. Sci. Instrum. 72, 4449 (2001).
[CrossRef]

Siwy, Z.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Sohn, L. L.

O. A. Saleh and L. L. Sohn, Rev. Sci. Instrum. 72, 4449 (2001).
[CrossRef]

Spohr, R.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
[CrossRef]

Stein, D.

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
[CrossRef] [PubMed]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
[CrossRef]

Trautmann, C.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Uram, J. D.

J. D. Uram, K. Ke, and M. Mayer, ACS Nano, DOI: 10.1021/nn/700322m (2008).

J. D. Uram and M. Mayer, Biosens. Bioelectron. 22, 1556 (2007).
[CrossRef]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Small 2, 967 (2006).
[CrossRef] [PubMed]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Angew. Chem. Int. Ed. 45, 2281 (2006).
[CrossRef]

Uzgiris, E. E.

R. W. DeBlois, E. E. Uzgiris, D. H. Cluxton, and H. M. Mazzone, Anal. Biochem. 90, 273 (1978).
[CrossRef] [PubMed]

Voss, K.

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Watanabe, W.

Yamada, K.

Yang, H.

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
[CrossRef]

Anal. Biochem. (1)

R. W. DeBlois, E. E. Uzgiris, D. H. Cluxton, and H. M. Mazzone, Anal. Biochem. 90, 273 (1978).
[CrossRef] [PubMed]

Anal. Chem. (1)

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Angew. Chem. Int. Ed. 45, 2281 (2006).
[CrossRef]

Appl. Phys. B (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhofer, G. Mourou, and A. J. Hunt, Appl. Phys. B 77, 25 (2003).
[CrossRef]

Biosens. Bioelectron. (1)

J. D. Uram and M. Mayer, Biosens. Bioelectron. 22, 1556 (2007).
[CrossRef]

Chem. Rev. (1)

H. Bayley and C. R. Martin, Chem. Rev. 100, 2575 (2000).
[CrossRef]

J. Appl. Phys. (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, J. Appl. Phys. 85, 6803 (1999).
[CrossRef]

Nature (2)

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Nature 398, 686 (1999).
[CrossRef] [PubMed]

J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, Nature 412, 166 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Rev. Sci. Instrum. (2)

R. W. DeBlois and C. P. Bean, Rev. Sci. Instrum. 41, 909 (1970).
[CrossRef]

O. A. Saleh and L. L. Sohn, Rev. Sci. Instrum. 72, 4449 (2001).
[CrossRef]

Small (1)

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, Small 2, 967 (2006).
[CrossRef] [PubMed]

Surf. Sci. (1)

Z. Siwy, P. Apel, D. Baur, D. D. Dobrev, Y. E. Korchev, R. Neumann, R. Spohr, C. Trautmann, and K. Voss, Surf. Sci. 532-535, 1061 (2003).
[CrossRef]

Other (1)

J. D. Uram, K. Ke, and M. Mayer, ACS Nano, DOI: 10.1021/nn/700322m (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic side view of laser machining geometry. (a) Direct ultrafast laser machining of a conical nanopore inside a coverglass as previously reported. (b) Greatly improved reproducibility and machining speed is achieved by terminating the pore 3 μ m from the lower surface and postprocessing with an electrically monitored HF etch.

Fig. 2
Fig. 2

(a) Configuration of HF etch to complete the pore. HF etches away the lower surface of the glass (gray) until the tip of the conical pore is exposed. A picoammeter (Keithley 487) detects electrical continuity when the HF reaches the pore. (b) SEM of the cone side of a pore after laser machining (some machining debris remains at the center of the cone). (c) Cone side after HF etch (image is blurry owing to impaired secondary electrons collection). (d) Backside of the pore after HF etch.

Fig. 3
Fig. 3

(a) Cone side of a pore before the PECVD of SiO 2 . (b) Backside of the pore after 8 s of the PECVD shrinkage process.

Fig. 4
Fig. 4

Calibration of a nanopore. (a) Average peak amplitude of resistive-pulse events from particles of diameters 60, 120, 144, and 220 nm passing through the 490 nm pore shown in Fig. 2d. (b) Frequency of resistive pulse events versus the concentration of 120 nm particles. Linear regression fits were constrained to pass through the origin.

Metrics