Abstract

Two object-dependent filters (an amplitude and a phase filter) are used in the object plane on the iterative calculation of a kinoform instead of a single (phase) filter as usual. The amplitude filter is a system of weight coefficients that vary in the process of iterations and control the amplitude of an input object. The advantages of the proposed method over other ones are confirmed by computer-based experiments. It is found that the method is most efficient for binary objects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Gerchberg and W. O. Saxton, Optik (Jena) 35, 237 (1972).
  2. J. R. Fienup, Appl. Opt. 21, 2758 (1982).
    [CrossRef] [PubMed]
  3. J. R. Fienup, Opt. Eng. (Bellingham) 19, 297 (1980).
  4. F. Wyrowski and O. Bryngdahl, J. Opt. Soc. Am. A 5, 1058 (1988).
    [CrossRef]
  5. F. Wyrowski, J. Opt. Soc. Am. A 7, 961 (1990).
    [CrossRef]
  6. G.-Z. Yang and B.-Y. Gu, Int. J. Mod. Phys. B 7, 3153 (1993).
    [CrossRef]
  7. O. Ripoll, V. Kettunen, and H. P. Herzig, Opt. Eng. (Bellingham) 43, 2549 (2004).
    [CrossRef]
  8. A. V. Kuzmenko, “Method of the kinoform synthesis,” UA patent 65295 (Ukraine) Byull. 1 (January 16, 2006).
  9. A. V. Kuzmenko and P. V. Yezhov, Appl. Opt. 46, 7392 (2007).
    [CrossRef] [PubMed]

2007

2004

O. Ripoll, V. Kettunen, and H. P. Herzig, Opt. Eng. (Bellingham) 43, 2549 (2004).
[CrossRef]

1993

G.-Z. Yang and B.-Y. Gu, Int. J. Mod. Phys. B 7, 3153 (1993).
[CrossRef]

1990

1988

1982

1980

J. R. Fienup, Opt. Eng. (Bellingham) 19, 297 (1980).

1972

R. W. Gerchberg and W. O. Saxton, Optik (Jena) 35, 237 (1972).

Bryngdahl, O.

Fienup, J. R.

J. R. Fienup, Appl. Opt. 21, 2758 (1982).
[CrossRef] [PubMed]

J. R. Fienup, Opt. Eng. (Bellingham) 19, 297 (1980).

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik (Jena) 35, 237 (1972).

Gu, B.-Y.

G.-Z. Yang and B.-Y. Gu, Int. J. Mod. Phys. B 7, 3153 (1993).
[CrossRef]

Herzig, H. P.

O. Ripoll, V. Kettunen, and H. P. Herzig, Opt. Eng. (Bellingham) 43, 2549 (2004).
[CrossRef]

Kettunen, V.

O. Ripoll, V. Kettunen, and H. P. Herzig, Opt. Eng. (Bellingham) 43, 2549 (2004).
[CrossRef]

Kuzmenko, A. V.

A. V. Kuzmenko, “Method of the kinoform synthesis,” UA patent 65295 (Ukraine) Byull. 1 (January 16, 2006).

A. V. Kuzmenko and P. V. Yezhov, Appl. Opt. 46, 7392 (2007).
[CrossRef] [PubMed]

Ripoll, O.

O. Ripoll, V. Kettunen, and H. P. Herzig, Opt. Eng. (Bellingham) 43, 2549 (2004).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik (Jena) 35, 237 (1972).

Wyrowski, F.

Yang, G.-Z.

G.-Z. Yang and B.-Y. Gu, Int. J. Mod. Phys. B 7, 3153 (1993).
[CrossRef]

Yezhov, P. V.

Appl. Opt.

Int. J. Mod. Phys. B

G.-Z. Yang and B.-Y. Gu, Int. J. Mod. Phys. B 7, 3153 (1993).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng. (Bellingham)

O. Ripoll, V. Kettunen, and H. P. Herzig, Opt. Eng. (Bellingham) 43, 2549 (2004).
[CrossRef]

J. R. Fienup, Opt. Eng. (Bellingham) 19, 297 (1980).

Optik (Jena)

R. W. Gerchberg and W. O. Saxton, Optik (Jena) 35, 237 (1972).

Other

A. V. Kuzmenko, “Method of the kinoform synthesis,” UA patent 65295 (Ukraine) Byull. 1 (January 16, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Weighting IFT algorithm.

Fig. 2
Fig. 2

Objects 64 × 64 : (a) binary; (b),(c) half-tone without and with a base (equal to 0.17).

Fig. 3
Fig. 3

Kinoform of the binary object [Fig. 2a]: (a) range of output intensities, (b) variance of amplitude of the reconstructed images versus iteration number.

Fig. 4
Fig. 4

Variance of amplitude of the reconstructed images for a half-tone object without and with a base [Figs. 2b, 2c].

Fig. 5
Fig. 5

Profiles of intensities of super-Gaussian beams with r 0 = 25 of the fourth and 100th orders obtained by calculations of the 256×256 kinoform within the weighting and IO algorithms.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f k = α k f ,
α k = α k 1 β k 1 ( k > 1 ) ,
β k 1 = f ( g k 1 + ε ) .
σ g ( k ) = l , m ( f l , m μ ( k ) g l , m ( k ) ) 2 l , m ( f l , m ) 2 ,
μ ( k ) = ( i , j ( f i , j ) 2 i , j g i , j ( k ) 2 ) 1 2 ,

Metrics